
Task-oriented System Engineering
Avigdor Zonnenshain

Rafael

P.O.Box 2250, Haifa 31021, Israel

Tel: +972 52 289 1773
avigdorz@rafael.co.il

Avi Harel

Ergolight Ltd.

6 Givon Str., Haifa 34335, Israel
Tel: +972 54 453 4501,
ergolight@gmail.com

Copyright © 2009 by Avigdor Zonnenshain and Avi Harel. Published and used by INCOSE with permission.

Abstract. Traditional system engineering (SE) is technology driven. In the design of interactive
systems we typically assume that the human operator traces the changes in the system states and
operates the system correctly. However, the human operator obeys different rules. The difference
between the designers’ and the operator’s rules often results in loss of productivity, decreased
performance and accidents, and eventually, loss of market share. In special cases, it makes sense
to demand that the user follows the designers’ logic. However, in most projects, it is the designer
who needs to adapt to the user’s logic. The article analyzes the limitations of common design
practices in resolving mismatches between the system and the user states. Complex system
engineering (CSE) is a framework suitable for handling the human operator as a critical system
component. This article presents a methodology for handling the human attributes in this
framework. The methodology extends the capability of common practices of user-centered
design and usability testing, which miss critical interdisciplinary issues. To resolve state
mismatches, the system engineers must be aware of the user’s logic. Such knowledge should be
reflected in the system architecture, to ensure that the user interface provides protection against
unexpected user events and to facilitate the system operation in new situations, such as in
emergency. The methods and guidelines presented here are applicable to the whole development
cycle.

Technology-driven System Engineering
The logical gap. Traditional system engineering is technology driven. In the design of
interactive systems we typically assume that the human operator traces the changes in the system
states and operates the system correctly. However, the human operator obeys different rules (e.g.,
http://www.aesthetic-images.com/ebuie/usability_semantics.html). The gap between the
designers’ and the operator’s logic often results in loss of productivity, decreased performance
and accidents. Eventually, this might end up in losing a market share. We start with examples of
the risks of disregarding the user’s logic.

Example: cable TV. A remote control of a cable TV system enables turning on and off and
changing the channels of both the TV set and the cable converter. A special button enables the
users to set to either TV or converter mode. The design seems logical and easy to understand.
Many users are willing to learn and follow this logic. Many others find it confusing. They often
forget to select the proper mode, resulting in them unintentionally turning the converter off or

setting the TV set to a wrong channel. They call customer support and report seeing snow on the
screen.

This example demonstrates the well known problem of system-user state mismatch. The
designer or the remote control unit assumed that the user will trace and notice the changes in the
TV/Converter modes of the remote control. The users, however, act carelessly, assuming that the
mode is according to their intentions. The design mistake is of assuming that the users behave
according to the designers’ logic.

Traditional SE practices, as well as common usability engineering practices do not include
guidelines for avoiding mode dependent functions. Such guidelines could prevent or at least
reduce the chance for this kind of mode mismatch. Also, neither traditional SE practices nor
common usability engineering practices include guidelines for how to ensure that the users are
aware of the active mode in case of mode mismatch, and that they know how to resolve such
situations. This well known problem is orphan. Moreover, regular usability testing, based on
prototypes, is not very effective for identifying this kind of problems. It enables to detect
situations of negative user experience, but not to identify the state mismatch causing the negative
user experience. Special kind of usability tests of the user’s behaviour are required to identify
state mismatch, involving tracing both the system states and the user’s perception of the system
states.

The methodology introduced here includes methods and guidelines for preventing situations
of state mismatch, by reducing functional overload of user controls or by intelligent control
allocation. Also, the methodology incorporates methods for detecting and protecting from
unexpected user events by software, and for supporting the user in recovery procedures
(Zonnenshein & Harel, 2008).

Example: machine damage. A production line was designed to operate with coolant valve
open. Due to a transient power failure of the controller, the controller invoked an unusual
command sequence, and the production line started with the coolant valve closed.

This example demonstrates the problem of an intra-system state mismatch due to procedural
disorder. Both the controller and the unit worked according to the specifications. However, they
were not coordinated. The designers wrongly assumed that the system will never deviate from
the specified command sequence. The system was not designed to detect and protect from
deviations from this sequence.

Traditional SE practices may include guidelines for detecting such mismatches, but they do
not incorporate guidelines for notifying the operator about them. Neither traditional SE practices
nor common usability engineering practices provide guidelines for instructing the operator about
the recovery procedures.

The methodology introduced here includes methods and guidelines for detecting intra-system
state mismatches and for guiding the users in the recovery procedures (Zonnenshein & Harel,
2008).

Example: emergency operation. On March 28, 1979, the main feedback pumps in the
secondary cooling system of the Three Miles Island nuclear plant failed. Due to a design
mistake, a pressure valve did not close after being open, and the reactor became overheated. Due
to design mistakes, important indicators were missing. The scope of the accident became clear
over the course of five days, as a number of agencies at the local, state and federal levels tried to
diagnose the problem and decide whether the on-going accident required a full emergency
evacuation of the local community, if not the entire area to the west/southwest. There is
consensus that the accident was exacerbated by wrong decisions made because the operators

were overwhelmed with information, much of it irrelevant, misleading or incorrect.
(http://en.wikipedia.org/wiki/Three_Mile_Island_accident).

This example demonstrates the problem of state ambiguity. The signals about the
problematic system situation did not indicate the cause for the exceptional values that the sensors
measured.

Technology driven SE practices, suited to the designer’s logic, assume that the users can
investigate the sources for the exceptional situations, because they must know the rules. This
assumption is based on wishful thinking.

Troubleshooting is an interdisciplinary activity, intended to map the system situation into the
operator’s mind. The methodology introduced here includes methods and guidelines for
automatic troubleshooting (Zonnenshein & Harel, 2008).

Traditional SE ignores usability. Typically, developers (e.g., programmers) who are fond of
technology are careless about user needs (Weinberg, 1971). Common SE practices do not target
the usability requirements. Too many products fail due to usability limitations after being
qualified by formal QA procedures: because they are useless, because they are too complex to
use, because the enable critical user errors. Too many systems intended to protect home security
installations work perfectly at the QA qualification stage, but fail when they are needed, because
psychological aspects were not considered at the design phase. Too much time we waste trying
to find out why the software behaves so strangely, or what should we do in order that the TV will
show a picture other than that of falling snow.

Blaming the users. It is typical to technology driven engineers to blame the users for not
following the designers’ instructions or intentions, for behaving illogically. Often, we can hear
frustrated engineers suggesting that the customer should change the user. This approach is
convenient for the developers. However, blaming the users often ends up in overlooking the
reasons for the user’s errors, enabling the users to repeat the errors. We cannot change the user.
However, we can change the design. It is the system manufacturers’ responsibility to prevent
user errors, and if the design is error prone, it is the developer who should be blamed (e.g.
http://www.efluxmedia.com/news_Whos_To_Blame_In_Deadly_Train_Collision_25718.html).

Interdisciplinary problem. It is typical to technology driven engineers to focus on
technological aspects of the system and to let somebody else consider the human factors. The
problem with this approach is that interaction failures are due to tight interdisciplinary coupling.
For example, in order to ensure seamless operation of a cable TV, the system engineer has to be
aware of the drawbacks of functional control overload, and to require that the usability engineer
will find ways to prevent state mismatch. Also, in order to prevent machine damage as in the
second example, the system engineer needs to inform the usability engineers about all known
failure modes, as well as about recovery procedures. And, in order to prevent accidents such as
that of the TMI nuclear plant, the usability engineer should be informed about of all the possible
system failures, and the means provided to identify them.

Blaming the system engineers. In order to prevent similar mishaps, somebody who knows how
the system might fail needs to communicate the knowledge with the user interface designers.
Typically, it is the system engineer who is in charge of preventing and mitigating the risks of all
sources of system failures, including those generated by the human operator. If the user is liable
to make a mistake, and the means to mitigating the risks of such mistakes are known, then it is
the system engineer who should be blamed for the resulting mishaps.

Feature-oriented engineering. Disciplined system development begins with task analysis. We
formalize the user’s goals and we break them down to minitasks. Next, we implement the
minitasks. Each minitask is transformed into a feature. Technology driven engineering is feature
oriented. This means that at this point we stop thinking about the user tasks. We deal only with
features derived from the minitasks. Now, it is the user’s responsibility to get the proper feature
at each stage of the interaction.

State compatibility. In many practical systems, many of the features provided behave
differently in different system states. When a state-dependent feature is invoked, the user needs
to be aware of the state: to make sure that the system is in the proper state, enabling the desired
feature variant. Otherwise, if the user fails to trace the system state or to verify that the system is
in the proper state, the wrong feature will be actuated.

State-dependent features provide many opportunities for proving the validity of Murphy’s law
(http://en.wikipedia.org/wiki/Murphys_law). Most operational failures attributed to user errors
are due to the user’s failure to verify that the system is in the proper state. Many examples of use
system mismatch may be found in http://www.ergolight-sw.com/CHI/Company/Articles/ESE-
Incose2008-P192.pdf

The operational database. The operational database consists of the system states and the
operational procedures. Formally, an operational procedure may be represented as a directed
graph, in which the nodes represent state dependency and the arcs represent the system features.
Each branch in the directed graph represents an operational scenario, namely, a sequence of
features, conditioned by the system states.

At design time, the designers of the operational procedures define a limited set of system
states. It is assumed that in run time, the users may know, remember and recognize the system
states. This assumption is valid only for very simple systems. In practice, even the system
designers do not remember all the details about the state changes and the state dependency.

At test time, after suitable training, the testers of the user interface may manage to verify that
they operate in the proper system state.

At run time, the human operators typically know the details required for executing main tasks,
namely, tasks that they need to repeat frequently. However, unlike the testers, the users access
only a small subset of the operational database. For example, because emergency situations are
rare, the users do not have a chance to exercise the emergency procedures beforehand. Unless the
users have a special training program, they cannot remember all the details required to operate
the emergency procedures successfully.

The operational context. The testers of the user interface operate in well defined scenarios, in
which they manage to trace the state changes, and they can take the time required to verify that
the system state suits their intention. This is not true for run-time operation. Besides the system
operation, the human operators are typically engaged in many other tasks. Consequently, they
might miss opportunities to perceive changes in the system state. Being busy doing other tasks,
they might also forget that they need to check the system state. Consequently, they make
mistakes.

The user’s logic. It is too easy to blame the users for being illogical. They are, but their logic is
different from that of the designers. Logical reasoning depends on data and on rules. The logical
gap is due to differences in the operational and context databases, and in the method used
employing the rules in decision making. Suppose that the user does not recall the condition for a
particular procedure step. Unlike system testers, who cannot complete the test procedure until

they believe they know the condition and its effect, the system operator needs to decide based on
partial information. Testers need to follow deterministic logic. They need to follow the rules,
whether they are documented or elicited from the designers. On the contrary, run-time operators
need to apply fuzzy logic. They do not have designers around them to enquire about state
recognition and state dependency, to help them identify the current system state and to instruct
them how to proceed. They may have already searched the operational instructions, or they
already know that not all the details are documented in the manual or the Help system. Yet, they
need to decide, based on partial information. They do not have the privilege of testers. Often,
under time stress, they need to gamble. Ad-hoc, in accident investigation, if we wrongly assume
that they know and remember the operational procedures, their decisions often might seem
illogical.

 Limitations of Technology-driven SE
Common SE practices fail to prevent mishaps as those described above. The reason for this is
that common SE practices persistently ignore the most critical system component, namely, the
human operator (Case, 1997). The bottleneck for achieving high levels of productivity and safety
is the human operators, who often fail to follow the designers’ instructions and expectations. In
order to deal with this bottleneck, we need to include the human operator in the system model.
We need to consider the properties of the user and to take care of the user’s failure modes.

The International Council on Systems Engineering (INCOSE) defines system engineering as

“ an interdisciplinary approach and means to enable the realization of successful systems.”
This definition suggests that usability, being a discipline required for the realization of successful
systems, is part of system engineering. Still, common SE practices fail to prevent mishaps as
those described above. Why? Because it is common practice to assume that the run-time user
will operate the system according to the designers’ expectations. It is common practice to focus
on technology, ignoring cognitive aspects of the interaction.

Sources of the usability gap. Everybody in the system development team expects that it will be
usable. Yet, it rarely happens. Berkun (http://www.scottberkun.com/essays/22-the-list-of-
reasons-ease-of-use-doesnt-happen-on-engineering-projects/) provided a list for why systems are
not always easy to use. This section provides an overview of the forces within the system
development team that act against usability, and proposes that customer utility should be set as
the main goal. It should be commented that naturally, many system engineers deny the kind of
critics that this section might hinder (one of the reviewers commented that the article overuses
cartoons as sources).

The developer's intuition. “An intuitive interface asks no more of the user than what they
either already know, or can immediately deduce from previous life experience. Implied is that
intuition is wisdom assumed and shared within a community — the community of users familiar
with the task and with the environment in which it is performed” (Buie and Vallone, 1997). The
usability problem results from the developers' intuition, that of highly skilled users, being applied
to regular users, who are not familiar with the system behavior (Martin cartoon:
http://www.nevtron.si/borderline/archive2/intuiti.gif). After getting used to the prototype,
developers typically judge the system behavior as experienced users (e.g., Dilbert cartoon:
http://web.mit.edu/is/usability/IAP/2003/Session1/Images/ctrl-alt.gif). For them, the system
behavior is obvious, and they fail to understand why a user, who sees a certain feature for the

first time, would not realize what it should do, and how (e.g. Dilbert cartoon:
http://web.mit.edu/is/usability/IAP/2003/Session1/Images/Stupid-users.gif).

Designers Creativity. UI designers do not always promote usability: simple UI appearance,
easy look and feel might often be boring for some designers. For example, website designers
love to apply flash technology, which is 99% bad (Nielsen alertbox:
http://www.useit.com/alertbox/20001029.html).

Complex System Engineering
The Extended System. The extended system describes the customers’ view of the system.
Typically, the customers may be interested in technical features and in functional features, such
as performance and reliability, but eventually, they need to know if the users can complete their
tasks in time, how reliably they do their jobs and what are the safety levels involved. Therefore,
besides the system under development, the extended system includes also the user and the user
interaction with the system, as demonstrated in the following chart:

Typically, the user is a critical intelligent, self-adaptive element of the extended system,
which suggests that we impose the framework of CSE on the extended system.

We apply here the framework of CSE, in which the user is a critical system component. CSE
processes and methods should be applied when the system to be developed is associated with the
following:
• Cognitive, self-adapting elements (e.g., humans or very smart computers) are present within

the system.
• Emergent behavior is dominant and will significantly influence the system's performance and

effectiveness (this is often a direct result of the previous point)
• Elements of the system are added, removed, or functionally modified during the scenario

(human operators often do this)
• The environment and interfacing systems will change and are not completely known at the

time of development
• The system development and its funding are not under a single, central authority. Many

change agents are at work.

• The system is sufficiently complex, so that exhaustive testing of all possible combinations of
inputs and all possible human operator interactions is not feasible.

The original framework of CSE deals with the properties common to users and intelligent sub
systems (e.g., Oliver et al., 1997). Instead, few techniques for interaction definition, such as
protocol definition and methods for error detection, are similar. Also, few of the most powerful
principles and means employed for usability assurance are also applicable to secure the
interaction between any elements of any complex system, regardless of their intelligence. On the
other hand, there are specific characteristics of the human operators, such as the perception of
warning signals, which require special treatment.

Our approach emphasizes that the users’ logic is different from that of intelligent sub systems,
which is derived from that of the designers. Intelligent systems will always behave as engineers
instruct them to do. Typically, they are deterministic and their behavior seems logical. However,
this logic is based on a limited database, namely, the knowledge that the engineers managed to
formulate as rules. The behavior of the human operators is also logical, but their logic is
unknown to the developers, for two reasons: First, because it relies on a huge database, which
has been accumulated during years of experience in managing various kinds of situations.
Second, because the users need to decide based on partial information, and therefore they need to
gamble. These differences motivate the need for the methodology introduced here. In our
approach, the design of interactive systems should consider the special features of the user’s
logic.

 The Quality of Interactive Systems
How does the quality of interactive systems differ from that of automated systems?

The definition of quality of automated systems is built bottom up. We define performance,
reliability, recovery costs of the system units, and we compute these attributes for the whole
system using mathematical manipulations. The quality of interactive systems is defined in terms
of the user tasks. To evaluate the impact of the human operator on the system utility, we need to
evaluate the barriers to system efficiency and reliability. Research on Human Factors suggests
that focusing on system performance and reliability is practically useless, unless we also take
special care of the user performance and reliability:
• Performance. The time required for the operators to evaluate the system state and decide

what to do next is typically higher by an order of magnitude than the system response time.
Instead of measuring the system response time, we should measure the time elapsed from the
moment the user decides to perform a task until its completion. Typically, most of the elapsed
time is wasted because the user fails to follow the operational procedures, attempting to
recover from unwanted system response to unexpected actions. SE should regard user
productivity, rather than system performance (Landauer, 1993).

• Reliability. The operators MTBF is about 10% of the overall operation time, higher by
several orders of magnitude than that of the system. Instead of measuring component failure
rates, such as by MTBF, we should measure operational failure rates, such as the rate of
almost-accidents due to user errors. This is especially true for safety-critical systems, in which
the costs of an accident are much higher than those of maintenance. Operational reliability is
the key to task performance. (Example: http://www.jnd.org/dn.mss/commentary_huma.html).

• Recovery costs. The operators' MTTR is about 50% of the overall operation time, higher by
several orders of magnitude than that of the system. Instead of measuring maintenance costs,

such as by MTTR, we should measure the time it takes for the users to recover from system
failures.

• Logic. An application that is logical in its internal design and produces accurate results may
nevertheless be difficult to use. The reason for this is that logic is not absolute. It is subjective,
it is task related, and it changes over time. Typically, it applies to the internals of the
application. Therefore, the user has difficulty following the developer’s logic. (Buie and
Vallone: http://www.aesthetic-images.com/ebuie/larger_vision.html).

Managing the risks of usability deficiencies
The method proposed here for usability assurance is based on the common methodology of risk
management. Risk management is a structured approach to managing uncertainty related to a
threat, a sequence of human activities including: risk assessment, strategies development to
manage it, and mitigation of risk using managerial resources.
(http://en.wikipedia.org/wiki/Risk_management#Risk_retention). The previous section
demonstrates the risk assessment of usability defects. The remaining of this article discusses
strategies for managing these risks, and the implied requirements for managerial resources.

Potential risk treatments. Once risks have been identified and assessed, all techniques to
manage the risk fall into one or more of these four major categories (Dorfman, 2007):

• Avoidance (eliminate)
• Reduction (mitigate)
• Transference (outsource or insure)
• Retention (accept and budget)

Barriers to risk treatments. In order to apply the treatments we need to have the management
support in adopting a new strategy, which often contradicts the traditional strategies:

Marketing-oriented engineering. People often confuse usability with marketing. However,
marketing needs often conflict with usability (Dilbert cartoon:
http://www.guuui.com/images/20030209.gif). The problem is that marketing follows the user’s
buying forces, which are different from their usability needs. For example, when applying
banners in marketing campaigns, we intentionally distract the users from their original goals, in
favor of the marketing goals. Marketing managers think of attracting potential customers,
disregarding the actual customers (Dilbert cartoon: http://www.idblog.org/images/dilbert6-1.gif).
They encourage usage of gimmicks, such as splash screens, to highlight new features that sell,
regardless of the facts that these gimmicks hamper seamless operation. Marketing forces are
according to the customers’ wills, which are different from the users’ needs. For example, a key
feature that ensures usability is simplicity. However, marketing managers encourage complexity
(http://www.joelonsoftware.com/items/2006/12/09.html). Leading usability practitioners have
already noticed that people are not willing to pay for a system that looks simpler, because it
looks less capable. Even a fully automatic system should contain lots of buttons and knobs, to
make it look powerful (http://www.jnd.org/dn.mss/simplicity_is_highly.html). Before using a
product, people will judge its desirability and quality based on ‘what it does’ (i.e. the number of
features). Even though they may be aware that usability is likely to suffer, they will mostly
choose products with many features. After having used these products however, usability will
start to matter more than features and people will choose easy-to-use products over products with
many features. The dilemma is that in order to maximize initial sales one needs to build products
with many features, products that do lots of “stuff”. But in order to maximize repeat sales,

customer satisfaction and retention, one needs to prioritize ease-of-use over features
(http://www.lukew.com/ff/entry.asp?433).

Customer-oriented engineering. By disregarding usability, marketing managers often
encourage developing systems that are difficult to use. Sometimes, however, they are right in
doing so, because they do what the customers want, which is often not what they need. How
should we balance usability against marketing? How can we conclude which of the two factors is
more significant? The answer depends on the utility for the customers. However, even when
marketing is considered more important, usability should be considered. For example, suppose
that in order that the system looks powerful, the customers demand many features, and that all of
them are apparent and easy to access. Still, usability engineering may enforce virtual simplicity,
by highlighting the essential features and by separating them from the nice-to-have features.

Usability Engineering – UE
Usability engineering is the discipline for assuring the system's usability. Usability engineering
implements human factors throughout the various disciplines involved in system engineering, to
ensure that the system operation is fluent, efficient, reliable and safe. It is a cost-effective, user-
centered process that ensures a high level of effectiveness, efficiency, and safety in complex
interactive systems. Usability engineering is a structured, iterative, stepwise development
process. Like the related disciplines of software and systems engineering, usability engineering is
a combination of management principals and techniques, formal and semiformal evaluation
techniques, and computerized tools.

Definition of system usability. Usability is defined in many different ways, most of them
emphasizing ease of use. The Usability Professional Association (UPA) defines usability as the
degree to which something - software, hardware or anything else - is easy to use and a good fit
for the people who use it (http://upassoc.org/usability_resources/about_usability/index.html) .

The examples above demonstrate that usability is much more than ease of use. ISO 9241-11
adds aspects of effectiveness and efficiency, defining usability as:

" the extent to which a product can be used by specified users to achieve specified
goals with effectiveness, efficiency and satisfaction in a specified context of use.”

However, our methodology is about another aspect of usability, namely, the human factors
affecting the system utility.

Utility Assurance. Task-oriented SE enables maximizing the customer’s utility in the long run.
The utility function can be described as in the following chart:

The utility function has two phases: The startup and the main phase. The startup phase begins

with the initial usage of the system and ends with the utility function reaching maximum utility.
The initial value of the utility function is determined by the intuitivity of the user interface. The
slope from the initial value to the maximum value is determined by the ease of learning.
Following the startup phase is the beginning of the main phase, in which the utility function
stabilizes. Then the system utility gradually decreases. The reasons for utility decrease include
hardware reliability and maintenance costs, well know in common QA. Additional reasons for
the decrease of the system utility may be attributed to human factors, such as user errors and the
user’s capability to handle system failures.

Task-oriented System Engineering
Traditionally, usability engineering focuses on the system intuitivity and ease of learning, which
are features of the startup phase. Eventually, common usability practices are adequate to deal
with these aspects and are of low value when dealing with the main phase of the utility function.
Common QA practices on the other hand, are applicable to the main phase. However, they focus
on technical aspects of the system, disregarding the user’s role. The human factors that affect the
main phase of the system utility are not considered by any of the common practices. This is why
and where we need to extend the system engineering.

Sources of User Difficulties. The Task-oriented SE considers two sources of user difficulties:
• User errors
• User incapability to handle system failures.

An example of an accident due to a user error is the ecological disaster of 1967 caused by the
Torrey Canyon supertanker (http://en.wikipedia.org/wiki/Torrey_Canyon). The accident was due
to a combination of several exceptional events, the result of which was that the supertanker was
heading directly to the rocks. At that point, the captain failed to change the course because the
steering control lever was inadvertently set to the Control position, which disconnected the
rudder from the wheel at the helm (Casey, 1998).

Examples of the second type are the TMI accident described above, the NYC blackout following
a storm (http://en.wikipedia.org/wiki/New_York_City_blackout_of_1977) and the chemical
plant disaster in Bhopal, India (http://en.wikipedia.org/wiki/Bhopal_Disaster).

Iterative design. Task-oriented SE is based on iterative design. In Technology-driven SE, the
iterations enable changes in the specifications and design during the system testing. In Task-
oriented SE, they enable early changes through prototyping and late changes following usability
testing. The details of integrating usability engineering in SE are presented in Zonnenshein &
Harel (2008).

Conclusion
Task-oriented SE enables us to make sure that the users not only use the system according to

the specification, but also according to the customer’s expectation. In particular, the Task-
oriented SE approach presented here enables us to avoid user confusion and to defend the system
from exceptional user events.

Bibliography
1. Buie, E., A., and Vallone, A. Integrating HCI engineering with software engineering: A call

to a larger vision. In Smith, M. J., Salvendy, G., & Koubek, R. J. (Eds.), Design of
Computing Systems: Social and Ergonomic Considerations (Proceedings of the Seventh
International Conference on Human-Computer Interaction), Volume 2. Amsterdam, the
Netherlands: Elsevier Science Publishers, 1997, pp. 525-530.

2. Case, S. E. Towards user-centered software engineering. Proceedings of Usability
Engineering 2: Measurement and Methods (UE2). Gaithersburg, MD, March, 1997, tbd
pages.

3. Casey, S. "Set Phasers on Stun", Aegean Publishing: Santa Barbara, 1998
4. Dorfman, M., S. Introduction to Risk Management and Insurance (9th Edition). Englewood

Cliffs, N.J: Prentice Hall. ISBN 0-13-224227-3. 2007
5. Dumas, J.S. and Redish, J.C., “A Practical Guide to Usability Testing”, Exeter, England;

Portland, Or.: Intellect Books, 1999
6. Landawer, T.K., “The Trouble with Computers: Usefulness, Usability, and Productivity”,

MIT Press, 1993
7. Leventhal, L., and Barnes J., Usability Engineering, Process, Products & Examples,

Pearson Education, Inc., Pearson Prentice Hall, 2008.
8. Oliver, D. W., Kelliher, T.P., and Keegan, J.G., Engineering Complex Systems with Models

and Objects. McGraw-Hill, New York, 1997
9. Paech, B., and Kohler, K., "Usability Engineering integrated with Requirements

Engineering" ICSE Workshop "Bridging the Gap between Software Engineering and
Human-Computer Interaction" 2006

10. Zonnenshein, A. & Harel, A, “Extended System Engineering – ESE: Integrating Usability
Engineering in System Engineering”. Poster presented at Incose International Symposium,
Utrecht, The Netherlands, 2008. http://www.ergolight-sw.com/CHI/Company/Articles/ESE-
Incose2008-P192.pdf

 Biography
Avigdor Zonnenshain. Dr. Zonnenshain has a Ph.D. in Systems Engineering from the
University of Arizona, Tuscon. Formerly, he held several key positions related to quality and
systems engineering. Currently, he is the Senior Associate Researcher at RAFAEL Advanced
Defense Systems Ltd., Israel, and a Senior Lecturer at the Technion, the Israeli Institute of
Technology . Also, he is an active member of the Israel Society for Quality (ISQ), the leader of
the assessment team for the National Quality Award for Industry, the Chairman of the
Standardization Committee for Management & Quality, and the Chairman of the Steering
Committee of RAFAEL for Social Responsibility.

Avi Harel. A mathematician, founder and active manager of Ergolight Ltd. Formerly a software
engineer, a system engineer and a Human Factors engineer of main projects at Rafael, the
Armament Development Authority of Israel. The inventor and chief developer of Ergolight
award-winning tools for usability diagnostics based on logs of the users’ activity. Currently, a
board member of the Israeli chapter of the Usability Professional Association (UPA), and the
chair of the Technical Committee for Usability of the Standards of Institute of Israel (SII).

Appendix: The Usability Gap
The following table summarizes usability considerations typically missing from SE disciplines:

 Technology-driven Practices Typical Logical Gap

System
analysis

Excessive features satisfying
marketing demands.

Users are slow. They fail to find the feature they need in time

System
specification

Using SysML features Popular SysML features hamper usability assurance:

Event-
response
definition

By use-cases Enables user errors resulting in system failure:
• Events that are unexpected and unacceptable in certain

system states
• System states that do not match the operational procedures

State
definition

By state charts Encourage mode-dependent system behavior, which enables
mode errors

System
architecture

Limited set of master requests • Unlimited opportunities for user errors.
• The system fails due to user errors

Interaction
analysis

This is an informal activity.
Operational procedures
remain undefined. Users are
expected to know the rules,
although these are not defined
yet.

Users unable to find the features they need, they do not know
which option to select and what values to set.

Interaction
specification
and design

Informal based on use-cases,
or by rapid prototyping by
software experts

• Users do not follow the developer’s intentions
• Implements the error-prone mode-dependency

UI design Attractors, such as animation,
based on availability.

• Users distracted from their intentions
• Users struggle to get their needs

Risk analysis We focus on preventing
system failures.

The system is not protected well against user errors. Mainly,
the problem is that users fail to follow the system modes.
(http://en.wikipedia.org/wiki/Mode_error)

System
failure
protection

We protect against expected
failures.

• Users do not perceive the failure situation
• Users do not recognize the system state
• Users do not know how to resolve the problem

Error
prevention

We assume users operate
according to our intentions or
instructions.
We assume that users do not
make mistakes and do not err

• Users model of the system is different from ours
• Users make errors (Martin's cartoon:

http://www.nevtron.si/borderline/delete.gif), often
resulting in system failure.

User failure
protection

We protect from risky events
and from risky states

User events are sometimes unexpected, resulting in
unexpected risky system states.

Testing We assume that the users
follow the (often
undocumented) operational
instructions

• Users operate not as presumed
• The system does not handle unexpected user events
• Critically risky unexpected user events not identified

	Prev:
	Next:
	Close:
	First:

