

Towards a Holistic, Total Engineering Cost Model

Gan Wang
BAE Systems
Reston, VA

gan.wang@baesystems.com

Alex Shernoff
BAE Systems
Reston, VA

alex.shernoff@baesystems.com

Jon Turnidge
BAE Systems
Reston, VA

jon.turnidge@baesystems.com

Ricardo Valerdi
MIT

Cambridge, MA
rvalerdi@mit.edu

Copyright © 2009 by Gan Wang, Alex Shernoff, Jon Turnidge, and Ricardo Valerdi. Published and used by INCOSE with permission.

Abstract. In this paper, we explore a new approach for a unified and interdisciplinary
parametric model for estimating the total engineering effort in developing and delivering a
software-intensive complex system. We begin by reviewing some of the limitations of using
existing engineering discipline-focused tools for estimating total engineering cost and by
articulating the benefits of such a holistic model. Applying a two step method combining
heuristic analysis and data validation, we propose three hypotheses to expand the basic cost
estimating relationship of COSYSMO, a systems engineering model, to the total engineering
scope by including software size drivers. The implementation of the hypotheses and the
validation approach are also discussed. We conclude the discussion by outlining the future work
required to realize such a model and to apply it to supporting successful system development
endeavours.

Introduction
What would you do if you were asked today to develop an engineering bid, say, for a cost

proposal? How do you develop a total engineering estimate? An experienced estimator will lead
you though the familiar steps: defining the project work scope, collecting and analyzing the
historical data, selecting appropriate estimating techniques (i.e., analogy, parametric, bottom-up,
or some combination of the three), and then developing the estimate using a cost model. When it
comes to parametric models, there are many (commercial and academic) off-the-shelf tools or
vendors to choose from, some are well known in the industry – SEER, PRICE, SLIM,
COCOMO, just to name a few.

When you look into these tools, you will find that just about all of them are functionally or
engineering discipline oriented. As shown in Figure 1, each model focuses on the tasks
performed by a specific engineering function in support of a project.

There is one problem with this engineering discipline-focused approach: these tools provide
only single function estimates, each with independent set of assumptions and mostly losing sight
of the integrated engineering scope and the interdependency of functional tasks on the project.
Using models that focus on individual functions requires someone to aggregate them into a
complete, coherent estimate – the total engineering estimate – for a cost proposal. The process
used to do this is often informal and the tool deployed is frequently ad hoc, most likely a

spreadsheet. And more importantly, the potential gaps and overlaps between the different
estimates must be (but often not so adequately) resolved. Otherwise, you risk undermining your
competitive position by double counting or, even worse, neglecting cost elements. Let’s take a
more careful look at this problem.

Figure 1. Functional Focus of Parametric Cost Models

Limitations of Functionally-Focused Tools

While these tools are useful for sub-elements of the project cost, they do not provide the
complete answer. The shortfalls present several practical inconveniences.

First of all, when you assemble functional estimates into a total engineering estimate, there
usually are gaps and overlaps in the estimate scope. Software estimating tools, such as SEER-
SEM or COCOMO II, primarily estimate the development effort for software components or
computer software configuration items (CSCIs), typically using the source lines of code (SLOC)
based estimates for these items. There are factors in these models to account for the additional
effort of integrating these items to the prime system or the prime mission product (PMP).
Similarly, hardware models such as PRICE-H or SEER-H estimate the effort of developing
hardware configuration items (CIs) using drivers like the component weight and size. They,
once again, limit the estimate to these components under consideration. The overall system
design, integration and test effort are ancillary considerations or after thoughts by these models.

For the system level development effort, the answer may be to use the Constructive Systems
Engineering Cost Model (COSYSMO). It may be appropriate because its primary focus is on the
system design and integration activities. This model has gained rapid popularity recently years
in the industry (Valerdi 2008) and has been validated with data from several aerospace &
defense companies. The issue is, however, where the hand-off point is to the component level
development effort. Where does one draw the boundary between the system level model (e.g.,
COSYSMO) and the other models used for the component level estimates, so that there are no
scope overlaps and, just as importantly, no effort gaps? There can be general application
guidelines on how to reconcile the scopes (Wang, et al 2009), but it is difficult to institute hard
boundaries that are consistently followed. The devils are in the details, as the exact scope and
quality of an estimate is determined as much by the sizing inputs to the model as the historical
data built into the calibrations. To adjust scope in the calibrations is a much more involved
endeavor, requiring significantly greater effort and longer turnaround time. These guidelines are
really stopgap measures that can prevent users from effectively benefiting from the potential
value provided by the models.

For instance, the software estimate may include part of the integration effort related to the
CSCIs under consideration. At the same time, the hardware estimate may also consider the

integration effort related to its CIs. The question is which estimate definitively covers the
integration effort for the software CSCIs to go on to the hardware CIs. It is unclear since it
depends on the assumptions made in both estimates. If we use COSYSMO and it covers the
system integration effort, then you have to reconcile the integration efforts from all three
estimates. Similar contentions may arise with design activities. How does one adjudicate the
division of labor and ensure that each model provides a complementary estimate? On the other
hand, which estimate covers specialty engineering activities such as security, information
assurance, and environmental issues? How about efforts involved in operational tests, or site
activation? Gaps and overlaps are an increasing larger issue when you start to consider other
areas of the total engineering estimate.

The second shortcoming is the cumbersomeness involved in conducting rapid, “round-trip”
sensitivity analysis and cost trades. As we have indicated above, generating the total engineering
estimate is a two-step process, first the functional estimates and then aggregating them to the
total system estimate. Any changes to the estimate would have to go through the same two step
process. It is inconvenient, if one wishes to conduct quick sensitivity analysis at the system
level, and requires a little bit of joggle between multiple applications running at the same time
and possibly among different people with different expertise (different functional models are
typically owned and operated by different functional groups in an organization).

The third problem is the non-trivial cost and investment required in developing such as an
estimate. To generate a total engineering estimate, it would likely require multiple experienced
personnel to run the functional models as these specialized models typically require specialized
training and skill sets. Someone must then integrate the total estimate at the system level by
creating a separate estimate. Depending upon the size of system and availability of special-
skilled people, this task could incur significant cost and untimely cycle time. Practical
experience corroborates the fact that it is a significant undertaking to estimate cost in proposals
and business pursuits with a reasonable degree of accuracy. Organizations strive to cut cost and
to be lean to stay competitive in today’s market, but this is difficult to do when engineering cost
tools are fragmented.

A major contributor to these shortcomings is that each cost tool was developed to operate
independently and, therefore, did not consider the scope and impact of other complementary
tools in a deliberate manner. Independent assumptions were made about the functional scope in
the development and calibration of each cost model, typically with an exclusive focus on its own
center piece, a HW or a SW component. However, it is impractical for any individual project to
limit to either hardware development or software development. Most systems today require
considerations of multiple engineering disciplines and expertise in order to meet the customer
requirements.

The question is whether an alternative approach is possible to integrate multiple perspectives
in a more holistic manner for estimating total engineering cost.

A Holistic Approach to Estimating Total Engineering Cost

A holistic parametric model that can provide a single estimate for the total system cost
including all the functional elements is desirable in more ways than one. It can be used to create

a rough-order-of-magnitude (ROM) estimate in the early phase of system life cycle to analyze
business opportunities, assess competitive position in cost and risk, and support go/no-go or
make/buy decisions, all in short turn-around time. It can also provide cross-check and
independent validation for other estimating methods such as functional estimates or bottom-up
bids. It is ideal to conduct quick-turn sensitivity analyses and architecture-level trade studies of
alternative solutions in an interactive manner, for example, by turning the sizing “knobs” and
directly observing the sensitivity of individual parameters on the cost impact of the complete
system. Most importantly, it provides significant opportunities for cost savings and cycle time
reduction in developing engineering estimates and system bids.

In this paper, we examine the feasibility of developing a holistic, total engineering cost
model for estimating the end-to-end, total system development effort, which includes all the
functional elements. In the following sections, we discuss the modeling approach used in this
research, outline a number of hypotheses required to establish the basic cost estimating
relationship (CER), and describe the methods to validate these hypotheses. We then conclude
with suggestions for follow-on work.

Modeling Strategy
The basic modeling assumption is that we can identify a set of sizing parameters or “size

drivers” and define the corresponding Cost Estimating Relationship (CER) that establishes
sufficiently significant correlation between certain parameters (independent variables) and the
total engineering effort (dependent variable) in developing a system. To manage the scope of the
problem, we limit our initial investigation to the software-intensive systems or projects, which
include only two major cost components – systems and software. The rationale is that if the
relationship can be established in software-oriented systems, the same modeling approach can be
extrapolated to consider other hardware or supportability drivers and scopes. This incremental
approach will enable early harvest of low hanging fruits and effectively apply lessons learned to
solving the bigger problem.

The total engineering cost and effort can be systematically captured using a two-dimensional
construct. The first is engineering scope. In order to define a coherent total engineering scope
involved in a program, we use a generic, contractor Work Breakdown Structure (WBS) defined
based on the MIL-HDBK-881 (1998) and the EIA/ANSI 632 (1999) standard. The top level
breakdown of this structure is listed in Figure 2 (a more detailed structure is listed in the
Appendix). The handbook provides a consistent and visible framework for identifying defense
materiel items and contracts within a program1. It provides a range of examples to illustrate the
applicability of the WBS across aircraft, electronic/automated, missile, ordnance, ship, space and
surface vehicle systems. The hierarchical structure provides multiple levels that are focused on
defining increasingly detailed information on the tasks needed to develop and deliver a Prime
Mission Product (PMP). It also offers uniformity in definition and consistency in application for
developing the basic construct and the top-level elements of the WBS and supersedes MIL-STD-
881B (1993) per DoD Directive 5000.2. A standard WBS is a necessary step in a consistent and
mature engineering process. More importantly, organizations must rely on a standard structure

1 The Department of Defense is taking the actions necessary to reinstate MIL-HDBK-881 into a proper standard, but this has yet to be

approved by the Office of the Secretary of Defense and the Defense Standardization Council.

to categorize costs in order to provide required reports to the government (Stem, Boito &
Younossi 2006).

Figure 2. Generic, contract work breakdown structure (WBS)

The second dimension is the engineering disciplines or functional groups. For purposes of
this paper, the total engineering work that is required for the development and delivery of a
system is performed by the following six functional groups, each defined by the following
standards or documents shown in Table 1.

Table 1. Engineering Functions Comprising Total Engineering Cost on Projects

Engineering Function Process and Tasks As Defined By

Systems Engineering ISO/IEC 15288, EIA/ANSI 632

Software Engineering ISO/IEC 12207, MBASE/RUP

Electrical Engineering MIL-HDBK-881, EIA/ANSI 632

Mechanical Engineering MIL-HDBK-881, EIA/ANSI 632

Support Engineering MIL-HDBK-881, EIA/ANSI 632

Project Engineering Management MIL-HDBK-881, EIA/ANSI 632

This two-dimensional construct is employed to ensure a consistent scope of engineering and,
subsequently, a singular set of cost elements corresponding to that scope. We use this structure
to substantiate the notion of “total engineering effort” in the following context of this paper.

We use COSYSMO and COCOMO II as the respective systems and software reference
models for this investigation. Both COSYSMO and COCOMO II are open models and,
therefore, flexible to accommodate future extensions and improvements. Commercial models
such as TruePlanning (formerly called PRICE) and SEER are proprietary, which give no insight
into fundamental algorithms embedded in the CERs and would not permit investigations at this
level without cooperation of their respective owners.

1.0 – System/Project
1.1 – Integrated Project Management (IPM)
1.2 – Systems Engineering
1.3 – Prime Mission Product (PMP)
1.4 – Platform Integration
1.5 – System Test & Evaluation (ST&E)
1.6 – Training
1.7 – Data Management
1.8 – Peculiar Support Equipment
1.9 – Common Support Equipment
1.10 – Operational / Site Activation
1.11 – Industrial Facilities

The COnstructive COst MOdel II (COCOMO II) (Boehm 2000) was developed at the Center
for Systems and Software Engineering at the University of Southern California (USC). It has
been a widely used and accepted model among industry and government stakeholders since its
initial creation in 1981. The basic assumption behind COCOMO II is that software engineering
effort can be estimated as a function of the size of the software, in terms of lines of code or
function points, and a series of effort multipliers. The COCOMO II approach has proven to be
robust across a number of domains including aerospace & defense, IT, financial services and
embedded systems. To date, a number of derivative models have been created to address
specific needs of the estimation community including quality, product line investment,
productivity and security (Boehm, Valerdi, Lane, et al 2005).

One of the most recent derivatives of COCOMO II, the Constructive Systems Engineering
Cost Model (COSYSMO) (Valerdi 2008), is a parametric model for estimating the systems
engineering and integration effort required for the conceptualization, design, test, and
deployment of software and hardware systems and executing projects that develop such a
system. The model has attracted quick attention from industry and government alike. Several
organizations have developed internal implementation of the model including BAE Systems,
Lockheed Martin and Raytheon (Valerdi, et al, 2007). At BAE Systems an internal estimating
tool has been developed by calibrating the model to its own historical program data and used in
various bid and proposal activities with satisfactory results (Wang, Valerdi, Boehm, et al, 2008).
Increasing demands have risen from complementary engineering communities about the
possibility of developing a similar model to estimate the total engineering scope.

COSYSMO defines a parametric relationship that provides a statistical relationship between
systems engineering effort under nominal schedule, in person months, and four size drivers –
system requirements (REQ), system interfaces (IF), system algorithms (ALG), and operational
scenarios (SCN). COSYSMO defines a sizing quantity called “system size” from a weighted
sum of the four size drivers. In addition, it considers the concept of engineering reuse by
augmenting the system size with a five-category reuse model (Wang, Valerdi, et al, 2008). The
parametric relationship is further adjusted by fourteen effort multipliers2, which capture the
understanding, complexity, operations, people and environmental factors that produce cost
savings or penalties. The relationship is shown in Equation 1:

∏∑ ∑
=

⋅⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ+Φ+Φ⋅=

14

1
,,,,,,)(

j
j

E

k r
kdkdknknkekerSE EMwwwwAPM (1)

Where:

PMSE = Systems Engineering effort in Person Months (under nominal schedule)
A = calibration constant derived from historical project data
k = {REQ, IF, ALG, SCN}

2 Requirements understanding, architecture understanding, level of service requirements, migration
complexity, technology risk, documentation, # and diversity of installations/platforms, # of recursive
levels in the design, stakeholder team cohesion, personnel/team capability, personnel
experience/continuity, process capability, multi-site coordination and tool support.

r = {New, Modified, Adopted, Managed, Deleted}
wr = weight for defined levels of reuse
wx = weight for “easy”, “nominal”, or “difficult” size driver

xΦ = quantity of “k” size driver
E = represents diseconomies of scale
EM = effort multiplier for the jth cost driver. The geometric product results in an overall
effort adjustment factor to the nominal effort.

The approach we take is to examine the possibility of extending the COSYSMO estimating
relationship to the total engineering cost by correlating the COSYSMO size drivers to the total
engineering scope and by expanding the CER to include other functional drivers such as source
lines of code (SLOC). The rationale is simple. COSYSMO covers the end-to-end system
development life cycle, with emphasis on the front (system design) and back (system integration)
ends. The estimate covers the top layer of the engineering cost but not those at the lower
implementation levels. In other words, it provides the “width” but not the “depth”. It is
conceivable, however, that its scope can be expanded vertically to include lower-level activities
as described in the system Vee-model (Forsberg & Mooz 1995).

With this strategy in mind, we approach this problem in two steps:

1. Heuristic-based modeling. In this step, we propose a number of hypotheses based on
experience and empirical observation of historical data that augments the basic
relationship in equation (1) with the addition of new size drivers.

2. Validation of hypotheses through data collection and analysis. We collect historical
program data based on the modified relationship and examine the correlations that
substantiate the proposed hypotheses.

The next section provides a detailed, step-by-step derivation of each hypothesis.

Formulation of Hypotheses

We propose three hypotheses about the basic cost estimating relationship of COSYSMO in
order to expand its estimate scope to total engineering effort, as follows. Keep in mind that
COSYSMO, as defined in equation (1), estimates only the systems engineering and integration
effort as stipulated in EIA/ANSI 632 (1999).

Hypothesis #1: There is sufficient correlation between the COSYSMO size drivers –
system requirements, system interfaces, system-specific algorithms, and operational
scenarios – and total engineering effort in a software-intensive project.

This hypothesis implies that the COSYSMO parametric relationship can be expanded to
estimate the total engineering scope of a system, with minimum change of its model form:

∏
=

⋅⋅=
14

1j
j

E
SETE EMSSAPM (2)

Where:

PMTE = Total Engineering effort in Person Months (under nominal schedule)
SSSE = System Size, and

∑ ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ+Φ+Φ=

k r
kdkdknknkekerSE wwwwSS)(,,,,,, (3)

A keyword used in the hypothesis is the word “sufficient”. It intends to identify the degree to
which the modified CER can provide an adequate level of estimating fidelity, which would be
satisfactory for certain intended model applications. The significance of this hypothesis is that a
simple model can be established in a top-down manner, without excessive levels of detail, to
estimate the total, end-to-end engineering effort for developing a system. The immediate
applications include early life cycle ROM estimates, trade studies for architecture and technical
solutions, should cost, target cost, and cross-check or independent validation of estimates using
alternative methods. All these with implicit simplicity of the model form.

To further improve correlation and, therefore, the estimating accuracy, we explore the
possibility of expanding the system size definition to include other size drivers. The system size
defined in equation (2) is in terms of equivalent requirements, a.k.a., eReqs. In other words, the
size of the system estimated is in terms of number of requirements. This is easily understood and
accepted notion as requirements are used to specify the complete system before it is built. In this
context, however, this means that, in order to augment the system size with other size drivers, the
quantities introduced need also to be requirements based to maintain the unit of measure. This
leads to the second hypothesis.

Hypothesis #2: There is correlation between software requirements and source lines of
code (SLOC) count in software-intensive projects.

This hypothesis can be illustrated by a preliminary study result as shown by the scatter plot in
Figure 3, in which multiple programs are plotted in terms of software requirements and SLOC
count. In this context, software requirements are those requirements allocated to the software
team from the systems team. They are typically derived from the system requirements by the
requirement analysis and allocation activities at the system level. However, they do not include
those requirements that are further derived at software level. The same classification rule applies
as in counting system requirements, with three levels of difficulty and five categories of reuse.
The SLOC is counted according to the code counting process defined by Boehm, et al (2000), in
terms of equivalent source lines of code or eSLOC. These guidelines were developed to ensure a
high level of consistency required in counting these requirements.

Software Requirements (eReq)

So
ftw

ar
e

eS
LO

C

Figure 3. Relationship between Software Requirements and eSLOC (Preliminary Study

Result)

Although not exceptionally strong, the plot does show reasonable positive correlation
between SLOC and software requirements, and seemingly corroborates the assertion of
correlation between software requirements and software code count. Better refined counting
rules for software requirements may conceivably lead to enhanced correlation with SLOC count.
These rules, and their consistent application, can further help strengthen the correlation between
SLOC (software size metric) and system requirements (systems engineering size metric), which
directly relates system definition to software implementation. This relationship between software
and systems can be expressed as:

()SLOCfwwwwSS SWddnnee
r

rSW =Φ+Φ+Φ= ∑)((4)

Where,

xΦ = software requirement count
r = {New, Modified, Deleted, Adopted, Managed}
wr = weight for defined levels of reuse
wx = weight for “easy”, “nominal”, or “difficult” size driver

If the above relationship can be empirically validated, we can propose to further expand the
COSYSMO-defined system size by including a software component. Therefore, Equation (1)
can be modified as follows:

() ∏
=

⋅⋅+⋅⋅=
14

1j
j

E
SWsSEyTE EMSSwSSwAPM (5)

Where,

 SSSW = Incremental System Size contributed by software engineering metrics
 SSSE = Incremental System Size contributed by systems engineering metrics
 wy = weight for system-level size drivers
 ws = weight for software size driver

and

0.1=+ sy ww (6)

The incremental system size by software introduces an additional interchangeable and
complementary size driver: software requirements or SLOC count. The correlation function f()
provides a bridge from a SLOC-based quantity to a requirement-based one. The selection of
either is a matter of preference or may be determined by the availability of historical data.
However, we recognize the fact that one of the de facto standard sizing parameters for software
is SLOC3.

The weights in Equation (5) measure the contributions to the overall system size by the four
system drivers (i.e., requirements, interfaces, algorithms and scenarios) and the software driver
(software requirements or SLOC). On the other hand, the values for the weights in Equation 6
can be determined by the expected work share between the systems engineering and software
engineering functions. They can be calibration dependent, determined by the typical balance of
the two functions in specific system implementations. A strategy for implementation can be
through an iterative, two-step process. The first step applies the relationship in Equation (2) to
obtain a ROM estimate and high-level breakdown of the effort according to the WBS as in
Figure 2. The ratio derived from the effort associated with element 1.3 (PMP), to which any
software CSCI-level efforts should belong, relative to those of other elements can be used as the
basis for the weight calculation. Step two then applies the expanded relationship in Equation (5)
that now includes the SLOC as a driver to obtain a higher-fidelity estimate.

However, up to this point, we still cannot meaningfully corroborate the expanded CER in
equation (4) simply because the expanded system size may not result in a stronger correlation
with the total engineering effort than the original COSYSMO defined system size as in Equation
(2). To substantiate the relationship, we must consider the following hypothesis.

Hypothesis #3: There is a stronger correlation between software-expanded system size
and the total engineering effort in software-intensive projects.

The key word is “stronger”. Otherwise, the expanded relationship offers no practical use.

3 The other widely-used software sizing approach involves function points (Jones 2008)

Intuitively, however, the relationship seems to make sense. As the system drivers capture the
engineering activities and effort at the system design and integration level, SLOC count can
more accurately capture the low-level implementation effort related to activities such as coding
and unit testing. The incremental system size from SLOC could bridge the gaps where the four
system-level drivers may have weak predictive power, particularly in WBS 1.3 or at the software
subsystem implementation level.

If a stronger correlation can be established, then the expanded system size in Equation (5) is
used in lieu of Equation (2), in later system design and implementation phases when the SLOC
count is available or can be assessed. Whereas Equation (2) can be applied in earlier phases
when detailed data such as SLOC is hard to obtain. Both relationships apply, but are best used in
different system life cycle maximizing the benefit of each.

With hypotheses #2 and #3, the implication is that a total engineering model can be
established, with higher level of confidence and fidelity, to estimate the end-to-end engineering
effort for a system. If validated, this model can offer a practical alternative to existing
functional-based models by providing a straightforward estimating approach and by mitigating
the potential gaps and overlaps resulting from the integration of estimates from disparate models
and tools to arrive at the total engineering cost at the system level.

One of the biggest advantages of the models as stated in equations (2) and (5) is the
simplicity of the CERs, fundamentally changing the approach of how total engineering estimates
are developed. It potentially offers significant cost savings and cycle time reduction
opportunities in the estimation process and, more importantly, a systematic approach that yields
more accurate estimates; both of which are welcomed steps towards improving market
competitiveness.

Validation of Hypotheses

The validation of the proposed hypotheses above involves the collection and analysis of the
historical program data. Between 2007 and 2008, we embarked on a data collection activity in
conjunction with an internal development initiative led by the lead author at BAE Systems.
Historical project data are collected from the major sites across the country between multiple
lines of business (LoBs) in the Electronics, Intelligence and Support (EI&S) Operating Group
(OG). The data identified are mostly engineering development and manufacturing projects,
spanning the entire system development life cycle from concept to development, testing, and
delivery. They are then organized by business areas and product lines, as well as a set of other
contextual criteria. To support validation of hypotheses #2 and #3, we identified a subset of
projects that are software development in nature.

Due to the variety of project and system types and legacy organizations involved, we have
implemented a number of mechanisms that ensure the required level of consistency and fidelity
in collected data.

At step one, we must determine what total engineering effort means or what constitutes the
engineering scope as included in PMTE on the left-hand size of Equation (2). This was necessary
to ensure that calibration data was consistently collected and the estimated effort consistently

reported. The original COSYSMO defines its estimating scope by loosely aligning with
EIA/ANSI 632 standard (Valerdi 2008) which we tried to emulate as closely as possible.

For purposes of modeling total engineering cost on a project, we institute the two-
dimensional data collection structure as discussed in Section 2 – a reference contract WBS and a
generic OBS. A deliverable-oriented structure centered on developing and delivering a PMP, the
WBS, as in Figure 2, is designed to capture the complete engineering scope in a system
development project. Also as stated, this structure is defined based on the MIL-HDBK-881
(1998) and the EIA/ANSI 632 (1999) standard to enforce consistency and gain acceptance. The
work defined spans across multiple functions as defined by the OBS – systems, software,
hardware, and support engineering – and applies to a nominal system development life cycle,
from concept definition, to design and build, integration and verification, and to transition and
validation of the system.

As the historical program data have also been captured in mostly different and disparate
structures and, in many cases, using different financial systems, we went through a diligent and
thorough process of mapping cost elements from historical structures into this WBS. The
process was facilitated by the extensive training classes provided and cross-organization
stakeholder workshops held to achieve agreement and consensus. With up to fourth level
breakdown, the WBS specifies sufficient granularity and was able to account for all the
engineering activities consistently. It was a time-consuming process but allowed for the data
analysis to be carried out on a more accurate and an “apple-to-apple” comparison basis. A side
lesson learned from this exercise was that a unified data structure, if implemented for the
financial data collection (which may not be as a trivial endeavor as it sounds), may greatly
benefit the metrics and measurement process and enable the engineering estimating capability.

The systems engineering size drivers (i.e., requirements, interfaces, algorithms, and
scenarios), as well as the fourteen cost drivers, are based on the improved COSYSMO definition
in the extended model (Wang, Valerdi, et al, 2008), which defines a driver classification
construct with three levels of difficulty and five categories of reuse. The SLOC count is based
on the standard COCOMO II definition in terms of eSLOC, which accounts for new, adapted and
reused code with consideration of design modification, code modification, and code integration
(Boehm, et al 2000). The COCOMO II cost drivers and scale factors are also collected as
defined.

The following studies are conducted for validation of the stated hypotheses.

1. Total Engineering Effort vs. SSSE. To substantiate Hypothesis #1, scatter plots of
projects are developed based on similarity in project characteristics. The system size
SSSE is defined as in Equation (3) and the total engineering effort recorded according
to the WBS defined in Figure 2. The degree of correlation is examined by applying
regression analysis to the data and observing the goodness of fit. The derived mean
function is the calibration for the sample population.

2. Number of Software Requirements vs. eSLOC. The software requirements are
defined as the system derived requirements that are flown down to software through
the requirement allocation process. The eSLOC count is based on the COCOMO II
definition. The correlation is examined using distribution of software-oriented

projects. Regression of the data is also attempted to evaluate the goodness of fit. The
objective is to substantiate Hypothesis #2.

3. Total Engineering Effort vs. Expanded System Size for Total Engineering or SSTE.
The correlation is analyzed with the same dataset as in the study 2 using scatter
plotting and regression. The result is then compared with those in study 1. If
improved correlation can be observed, then Hypothesis #3 is supported.

The data collection activities are still in progress as of the writing of this paper. Therefore,
there is no conclusive evidence to support or reject the hypotheses. However, we can share some
of the early results which may show an early trend. Figure 4 below displays a scatter plot of a
small group of historical program data collected for validating Hypothesis #1, as described in the
study 1 above. Figure 3 above displays the work-in-progress results for the correlation between
software requirements and eSLOC as described in the study 2.

System Size (eReq)

To
ta

l E
ng

in
ee

rin
g

Ef
fo

rt
 (H

ou
rs

)

Figure 4. Scatter Plot of Historical Program Data Points
The data in Figure 4 is a subset of a much larger group of historical program data still in

collection. (Other data points are still in progress.) Though still early in the validation process,
the result is encouraging. The data set clearly exhibits the proper trend between the system size
and the actual total engineering effort and a good correlation among the data points. A
calibration can be derived from the set with a reasonable estimating fidelity. This early data
collection result shows a promise in validating Hypothesis #1.

Conclusion and Future Work
In this paper, we examined the feasibility of a holistic, total engineering cost model. We

proposed three hypotheses based on a modified COSYSMO parametric relationship. The goal is

to develop a total engineering model based on a set of system and software size drivers to
estimate the total, end-to-end engineering effort in developing a system. If validated, this model
can be applied to develop estimates of software-intensive systems and projects in a top-down
manner that otherwise depend on successful aggregation of independent software and systems
engineering estimates.

A logical corollary hypothesis is the extension of system size to including software function
points, which is a candidate for follow-on study. The same methodology can be extended to
explore the model expansion to hardware.

A holistic model of this type can significantly improve the efficiency and effectiveness of
developing ROM estimates, conducting technical solution trade studies, providing validation to
bottom-up and functionally oriented estimating approaches. Most significantly, it can be applied
with a potential of great cost savings and cycle time reduction and, hence, greatly improve
market competitiveness for organizations.

The validation work is on going through data collection and analysis activities at BAE
Systems. Early result shows encouraging promises for Hypothesis #1 and, to some degree,
Hypothesis #2. The validation work is in progress for analysis and validation of all the
hypotheses. In addition, an extended model prototype has been developed based on these
hypotheses to develop total engineering ROM estimates. The goal is to operational pilot this
model and to evaluate its effectiveness in the proposed applications. We are prepared to present
the ongoing results as progress is made.

Some possible limitations of this approach may include the ability to generalize the results to
project domains outside of those considered in the sample population (i.e., engineering
development and manufacturing projects). Another is that the approach is prone to inconsistency
in counting rules applied to different data collection approaches, particularly when the data is
collected at the different levels of system abstraction. The third is the potential mismatch across
organizations in defining the total engineering tasks and scope and how much these definitions
deviate from the MIL-HDBK-881 handbook/standard.

Despite these limitations we feel that the expanded CERs defined in this paper can provide a
useful step in better understanding the relationships between the cost and cost drivers of various
engineering disciplines and their eventual impact on the cost of the total system. We hope to
continue evolving these ideas and validating the concept, and to refine our approaches for the
benefit of more accurate and more effective cost estimating techniques to support successful
development of systems.

Appendix
Reference Contract Work Breakdown Structure

(Based on MIL-HDBK-881)

1.0 System / Project

1.1 Integrated Project Management (IPM)

1.1.1 Technical Management

1.1.2 Technical Reviews

1.1.3 Change Management

1.1.4 Technical Process and Quality Management

1.1.5 Acquisition & Supply Management (Subcontract & Technical Oversight)

1.1.6 Information Technology & Infrastructure

1.1.7 Dismantle and Disposal

1.2 Systems Engineering

1.2.1 Systems Engineering Management

1.2.2 ConOps & Stakeholder Analysis

1.2.3 Requirement Analysis & Management

1.2.4 Prime Mission Product (PMP) Design

1.2.5 Modeling & Simulation

1.2.6 Logistics Engineering

1.2.7 Reliability, Maintainability, Safety (RMS) Engineering

1.2.8 Specialty Engineering

1.3 Prime Mission Product (PMP)

1.3.1 Subsystem / Configuration Item (CI) 1…n (Specify Names)

1.3.1.1 IPT Engineering Management
1.3.1.2 Design
1.3.1.3 Design Analysis and Verification
1.3.1.4 Construction/Acquisition
1.3.1.5 Integration, Assembly, Test & Checkout (IATC)
1.3.1.6 Discrepancy Report (DR) Maintenance
1.3.2 PMP Application Software
1.3.2.1 IPT Engineering Management
1.3.2.2 Design
1.3.2.3 Construction/Acquisition
1.3.2.4 Integration, Assembly, Test & Checkout (IATC)
1.3.2.5 Discrepancy Report (DR) Maintenance
1.3.3 PMP System Software

1.3.3.1 IPT Engineering Management
1.3.3.2 Design

1.3.3.3 Construction/Acquisition
1.3.3.4 Integration, Assembly, Test & Checkout (IATC)
1.3.3.5 Discrepancy Report (DR) Maintenance
1.3.4 PMP Integration, Assembly, Test & Checkout (IATC)

1.3.5 Operations/Production Support

1.4 Platform Integration

1.4.1 External Interface & Technical Liaison Coordination

1.4.2 Transition to Use

1.4.3 Initial Spares & Repair Parts

1.5 System Test & Evaluation (ST&E)

1.5.1 ST&E Management

1.5.2 Design Solution Verification

1.5.3 Development Test & Evaluation (DT&E)

1.5.4 Operational Test & Evaluation (OT&E)

1.5.5 ST&E Mock-ups / Prototypes / Simulations & Test Equipment

1.5.6 ST&E Test & Evaluation Support

1.5.7 ST&E Test Facilities

1.6 Training

1.6.1 Equipment

1.6.2 Services

1.6.3 Facilities

1.7 Data Management

1.7.1 Technical Publications

1.7.2 Engineering Data

1.7.3 Management Data

1.7.4 Support Data

1.7.5 Data Repository

1.8 Peculiar Support Equipment

1.8.1 Peculiar Test & Measurement Equipment

1.8.1.1 IPT Engineering Management
1.8.1.2 Design
1.8.1.3 Design Analysis and Verification
1.8.1.4 Construction/Acquisition
1.8.1.5 Integration, Assembly, Test & Checkout (IATC)
1.8.1.6 Discrepancy Report (DR) Maintenance
1.8.2 Support & Handling Equipment

1.8.2.1 IPT Engineering Management
1.8.2.2 Design
1.8.2.3 Design Analysis and Verification

1.8.2.4 Construction/Acquisition
1.8.2.5 Integration, Assembly, Test & Checkout (IATC)
1.8.2.6 Discrepancy Report (DR) Maintenance
1.9 Common Support Equipment

1.9.1 Common Test & Measurement Equipment

1.9.1.1 IPT Engineering Management
1.9.1.2 Design
1.9.1.3 Design Analysis and Verification
1.9.1.4 Construction/Acquisition
1.9.1.5 Integration, Assembly, Test & Checkout (IATC)
1.9.1.6 Discrepancy Report (DR) Maintenance
1.9.2 Support & Handling Equipment

1.9.2.1 IPT Engineering Management
1.9.2.2 Design
1.9.2.3 Design Analysis and Verification
1.9.2.4 Construction/Acquisition
1.9.2.5 Integration, Assembly, Test & Checkout (IATC)
1.9.2.6 Discrepancy Report (DR) Maintenance
1.10 Operational / Site Activation

1.10.1 System Assembly, Installation & Checkout (On-Site)

1.10.2 Contractor Technical Support

1.10.3 Site Construction

1.10.4 Site Conversion / Upgrade

1.11 Industrial Facilities

1.11.1 Construction

1.11.2 Acquisition / Modernization

1.11.3 Maintenance

References
Abts, C. Extending the COCOMO II Software Cost Model to Estimate Effort and Schedule for

Software Systems Using Commercial-Off-The-Shelf (COTS) Software Components: the
COCOTS model, PhD Dissertation, University of Southern California, 2004.

Boehm, B. W., Abts, C., Brown, A. W., Chulani, S., Clark, B., Horowitz, E., Madachy, R.,
Reifer, D. J. and Steece, B., Software Cost Estimation With COCOMO II, Prentice Hall,
2000.

Boehm, B., Valerdi, R., Lane, J., Brown, A. W., COCOMO Suite Methodology and Evolution,
CrossTalk - The Journal of Defense Software Engineering, Vol, 18, No. 4, pp. 20-25, 2005.

Chen, Y., Boehm, B., Madachy, R., Valerdi, R., An Empirical Study of eServices Product Sizing
Metrics, 3rd ACM-IEEE International Symposium on Empirical Software Engineering,
Redondo Beach, CA, August 2004.

Cost Xpert Group, Inc. Cost Xpert 3.3 Users Manual. San Diego, CA: Cost Xpert Group, Inc.,
2003.

EIA/ANSI 632. ANSI/EIA-632-1988 Processes for Engineering a System, 1999.

Forsberg, K., and H. Mooz, Application of the “Vee” to Incremental and Evolutionary
Development, Proceedings of the National Council for System Engineering (NCOSE)
Conference, St. Louis, MO, July 1995.

Galorath, Inc. SEER-SEM Users Manual. El Segundo, CA: Galorath Inc., 2001.

Jones, C., Applied Software Measurement: Global Analysis of Productivity and Quality, 3rd Ed.
McGraw-Hill Professional, 2008.

MIL-HDBK-881, Work Breakdown Structure, Washington, D.C., 2 January 1998.

PRICE, Program affordability management, http://www.pricesystems.com, accessed December
30, 2006.

QSM, SLIM-Estimate, http://www.qsm.com/slim_estimate.html accessed on 12/30/2006.

SOFTSTAR, http://softstarsystems.com accessed on 12/30/2006.

Stem, D. E., Boito, M. and Younossi, O., Systems Engineering and Program Management:
Trends and Costs for Aircraft and Guided Weapons Programs, Project Air Force (U.S.),
Rand Corporation, 2006.

Valerdi, R. The Constructive Systems Engineering Cost Model (COSYSMO), PhD Dissertation,
University of Southern California, May 2005.

Valerdi, R., The Constructive Systems Engineering Cost Model (COSYSMO): Quantifying the
Costs of Systems Engineering Effort in Complex Systems, VDM Verlag, 2008.

Valerdi, R., Rieff, J., Roedler, G., Wheaton, M., Wang, G., Lessons Learned from Industrial
Validation of COSYSMO, 17th INCOSE International Symposium, June 2007, San Diego,
CA.

Wang, G., Valerdi, R., Ankrum, A., Millar, C., Roedler, G., COSYSMO Reuse Extension, 18th
INCOSE International Symposium, June 2008.

Wang, G., Valerdi, R., Roedler, G., Ankrum, A., Gaffney, J. E., Harmonizing Systems and
Software Estimation, 19th INCOSE International Symposium, 2009.

Biographies
Gan Wang, Ph.D., is an EI&S Engineering Fellow at BAE Systems. He has been engaged in
the research and development of systems engineering processes, engineering cost modeling, life
cycle cost estimation, decision support methods, and system-of-systems engineering and
management methodologies. Prior to joining BAE Systems, Dr. Wang has spent many years
developing real-time geospatial data visualization applications for mission planning and
rehearsal, battlefield management, command and control (C2), flight simulation, and aircrew
physiological training systems. He also developed control systems and aircraft simulation
models for various man-in-the-loop flight training systems. He has over twenty years of
experience in systems engineering, software development, research and development, and
engineering management involving complex, software-intensive systems.

Alex Shernoff is a Systems Engineer at BAE Systems. He has been working on the deployment
and implementation of COSYSMO at BAE Systems to localize it to organizational platforms and
processes and to support systems engineering productivity and efficiency analysis. Prior to this
effort, Alex assisted in the planning and logistics of BAE Systems continuing support for the
annual INCOSE Conference. Prior to joining BAE Systems, Alex graduated with a B.S. in
Electrical Engineering from The Ohio State University. He specialized in high voltage power
and electromagnetism.

Jon Turnidge is a Software Engineer at BAE Systems where he has been working on the
development of the Total Engineering Estimation Model and Process. Prior to joining BAE
Systems, he has worked in the Information Technology field for several firms in the Washington,
D.C. area providing database modeling and software engineering services to the federal
government. Jon holds a B.S. in Computer Science and Mathematics from the University of
Puget Sound.

Ricardo Valerdi, Ph.D., is a Research Associate with the Systems Engineering Advancement
Research Initiative and the Lean Advancement Initiative at MIT. He received his doctoral
degree in systems engineering from USC in 2005, where he developed the COSYSMO model for
systems engineering cost estimation. He is also a Senior Member of the Technical Staff at the
Aerospace Corporation. Prior to his doctoral studies, Dr. Valerdi was a systems engineer at
Motorola Radio Network Solutions Group. He serves on the Board of Directors of INCOSE as
Treasurer and is a member of the Measurement Working Group.

	Prev:
	Next:
	Close:
	First:

