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Developing 
Process Performance Baselines 
Process Performance Objectives 
Process Performance Models

Presenter
Presentation Notes
This presentation is about how a few companies developed their process performance baselines, objectives, and models.
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About the PresentationAbout the Presentation

About how a few companies at high maturity developed 
their PPB, PPO, PPM to meet business goals.

The companies performed project based software 
development.

Each company only has one type of methodology and life- 
cycle:

Iterative (Agile) or Waterfall.

Presenter
Presentation Notes
The presentation is about their ideas in improvements at high maturity.
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About the PresentationAbout the Presentation

About how they took on a path that made high maturity 
acceptable by the staff.

Presenter
Presentation Notes
The presentation is about the approach they used so that high maturity improvements can be made acceptable to the staff.
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Ritmico Progress, Ritmico Progress, RayneyRayney WongWong

Ritmico Progress is led by Rayney Wong who is a SCAMPI High Maturity lead appraiser, 
and a CMMI Introduction instructor.  Ritmico Progress is a SEI Agreement Partner for the 
CMMI Product Suite and is a registered company in Singapore.

Rayney has over 23 years of software development and project management experience, 
ranging from radar communication systems, network systems, to publishing printer drivers 
and windows applications, and developing common coherent processes shared by offsite 
development centers.

Rayney's experience includes high maturity knowledge in developing models and Statistical 
process control toolkits, developing business strategic initiatives and staff development 
activities to achieve business goals, and training in implementing process improvements and 
software development.  Companies have grown from 50 to over 500 people under Rayney’s 
guidance.

Rayney@RitmicoProgress.com

Presenter
Presentation Notes
Description about my company, Ritmico Progress.
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TerminologiesTerminologies
PPB Process-Performance Baselines 

A documented characterization of the actual results achieved by following a process, 

which is used as a benchmark for comparing actual process performance against 

expected process performance. 

PPO Quality and Process-Performance Objectives 

Objectives and requirements for product quality, service quality, and process 

performance. Process-performance objectives include quality; however, to emphasize the 

importance of quality in the CMMI Product Suite, the phrase quality and 

process-performance objectives is used rather than just process-performance objectives. 

PPM Process-Performance Models 

A description of the relationships among attributes of a process and its work products 

that is developed from historical process-performance data and calibrated using collected 

process and product measures from the project and that is used to predict results to be 

achieved by following a process. 

 
From SEI CMMI v1.2

Presenter
Presentation Notes
Terminologies from the CMMI.



PPO is used instead of QPPO.
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TerminologiesTerminologies

From SEI CMMI v1.2

Base 
Measures 

A distinct property or characteristic of an entity and the 
method for quantifying it.  E.g.: 
 Number of defects, 
 Size of Module in KLoc (Thousand Lines of code) 

Derived 
Measures 

Data resulting from the mathematical function of two or more 
base measures.  E.g.: 
 Defect Density = (Number of Defects) / Module Size KLoc 

 

Presenter
Presentation Notes
Terminologies from the CMMI.
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BGS, VOPBGS, VOP--MARMAR

Purpose of all improvements are derived from the Business 
Goals Strategy (BGS).

Copyright Rayney Wong

Presenter
Presentation Notes
The companies began their improvement journey by developing their business goals strategy using the VOPMAR approach.



The BGS develops an action based approach to meet the objectives.
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VOPVOP--MARMAR

Copyright Rayney Wong

1 Vision Realizing and understanding the vision, breaking the vision down 
into its constituent parts. 

2 Objectives Developing and prioritizing the goals and objectives that must be 
achieved to fulfill each part of the vision. 

3 Problems Identifying and analyzing the problems and root causes that are 
preventing us from reaching the goals, objectives, and vision. 

4 Measures Determining the measures to understand the extent of the 
problems and target measures to meet the objectives. 

5 Actions Developing the actions for resolving the problems and reaching the 
goals.  Improvements are aligned towards the objectives, vision and 
goals. 

6 Risks Considering the side effects and costs of the actions in order to 
mitigate risks and side effects caused by the actions. 

 

A BGS exercise typically takes up a period of several 
weeks and is performed annually.

Presenter
Presentation Notes
On an annual basis, the company develops a BGS for the year.

This strategy covers all departments in the organization.  It is not only for the software development department.

The measures form a link between the actions and the Problems and Objectives.

The current and target measures describe the extent of the problems as well as the current status and targets that must be reached to meet the objectives.
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BGS at High MaturityBGS at High Maturity

Copyright Rayney Wong

Presenter
Presentation Notes
At higher maturity, the current measures evolve into the process performance baselines, the target measures evolve into the process performance objectives.
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About the Measures in this PresentationAbout the Measures in this Presentation

Measures were from one of the companies.

Unit Testing of software modules with Test Cases.

Unit testing is performed after source codes have been 
reviewed:

Co-worker cross-check review of all source codes

Peer Review of critical module’s source codes

Measures have been adjusted by multiplying with factors as 
true measures cannot be shown.

Presenter
Presentation Notes
In this presentation we will use the measures of unit testing from one of the companies.
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PPB PPB –– Define the derived measures (part of BGS)Define the derived measures (part of BGS)

Unit Testing of software modules base measures:
#Defects found by the developer during unit testing of his module.

Module code size in KLoc.

#Test cases used to unit test the module.

Total time in hours taken to test the module using the test cases.

Possible PPBs that can be derived:
Defect Density = #Defects / Size KLoc

Test Case Density = #Test cases / Size KLoc

Test Speed = #Test cases / Testing time

Presenter
Presentation Notes
Definitions of the base measures that can be collected from unit testing.

The measures that can be derived from the base measures and used to develop the Process Performance Baselines.

In this presentation, we will focus on the Defect Density process performance baseline (PPB).
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PPB PPB –– Perform Statistical AnalysisPerform Statistical Analysis

Defect Density for Unit Testing
XmR or ImR requires time-sequenced data

#Defects/Size KLoc

PPB:
UCL = 5.828

LCL = 0.833

Average of Group Items XmR
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59 15.6 3.782051282

57 27.8 2.050359712

54 20.4 2.647058824

77 18.2 4.230769231

84 24 3.5

18 7.6 2.368421053

56 18.4 3.043478261

95 25 3.8

20 10.78 1.85528757

32 7.8 4.102564103

Presenter
Presentation Notes
The PPB is calculated using the XmR control charts, UCL and LCL.

Data must be time-sequenced.

The UCL and LCL form the natural process limits which is the range of variation of the module’s defect density: the # of defects found per KLOC during UT.



Exceptions: Special points or assignable causes

1 point outside +3 sigma

4 out of 5 points outside -1 sigma

14 points alternating up and down
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PPB PPB –– When to Develop?When to Develop?

Data are added into the XmR control charts as soon as each 
Unit Testing of a module is performed.

How many data points before we can use the control 
charts?

XmR requires time-sequenced data.

X-Bar does not unless time-sequenced tests are performed.

Presenter
Presentation Notes
For XmR control charts

Estimates of control limits can vary 20% - 40% if 5<k<20 data points.

Trial limits 20<k<35.  Recalculate limits each time data is inserted.

Natural Process Limits when K >= 42 data points.

For X-Bar control charts

Try to have 25 to 30 subgroups:

<=10 observations in each subgroup, use X-Bar, R charts.

>10 observations in each subgroup, use X-Bar, S charts.

# of observations in each subgroup should be the same.

Also depends on the variation in the data.



First use the Specification limits if any.
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False AlarmsFalse Alarms

Average of Group Items XmR
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Drive with care.  Small changes at a time.

Data shown are not from the organization.

For illustration purpose only.

Presenter
Presentation Notes
In the control chart on the left, the exception is 8 points below the average CL.

However, as more data is added later, the exception no longer exists.



The problem with using control charts to detect exceptions is that we may need to wait for sometime for these exceptions to be realized.

The exceptions have already happened.  We can now only apply improvements to prevent similar exceptions.

Only remove an exception if improvements can be applied to prevent future exceptions.



By making small changes at a time, pendulum swing issues can be avoided or minimized.
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Can Exception be removed?Can Exception be removed?
Exception is found

Is it a problem in
the process?

Yes No
This is an exception.
Apply Preventive
Corrective Actions.

Is it a problem in
the product?

Yes No

Is this a common
problem in the product? 5M, 1E?

Yes No Yes No
Do not remove 
exception if product 
problem cannot
be resolved. May 
require redesign in 
some modules.

This is an exception.
Resolve problem in
the product.

This is an exception.
Apply preventive
corrective actions.
May require Training.

?Need more research?

Presenter
Presentation Notes
To decide whether an assignable cause can be removed from the PPB.



e.g. Product has bad quality – found many defects during an instance of unit testing (UT).



Except for the process and product:

5 Ms and 1 P:

-Machines (tools) in the process

-Materials (process assets) used in the process

-Methods in the process

-Mother nature or the environment (e.g. poor ventilation, air-con is off during evenings when staff are working overtime)

-Measurement itself

-The people, culture
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Average of Group Items XmR
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PPB PPB 
 

PPBPPB’’

For each exception or set of exceptions, perform a problem 
solving process to consider improvements to prevent them.

10% 20% 10%

5% 3%

100%

2% 5%

15% 20% 10%

Quantitative FishQuantitative Fish--Bone DiagramBone Diagram

Presenter
Presentation Notes
For each assignable cause, root causes are determined.

Percentages are added into the root causes to ascertain the percentage of the problems attributed in the PPB.
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PPB PPB 
 

PPBPPB’’

Problem Solving Process must be done carefully to ensure 
improvements are able to prevent the exceptions.

Problem Solving Process are performed by the practitioners 
with guidance from the EPG.

Only remove the exceptions if there are improvements to 
prevent them.
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Presenter
Presentation Notes
For the data points that are exceptions, analyze the assignable causes.  How can these exceptions be prevented in the future?  What improvements can be made in the process assets?

Exceptions are removed from the PPB only if there are improvements to prevent them from recurring.



Problem solving process is also applied to reduce variations in the process.  E.g:

Besides exceptions, analyze other points (why there are so many defects), perform a 

Pareto analysis on origin of data e.g. defects that should have been found in earlier reviews or prevented.

What improvements can be made here?

Then consider the improvements that can be done in earlier processes to be able to detect these defects earlier and to prevent the defects.

Then improve the processes, templates, checklists, training materials, etc.

These data points that are not exceptions are not removed from the PPB even though there are improvements to reduce or prevent these defects.



Alternatively, if the exceptions are very few defects are found, consider if it is true whether the module is of high quality or whether the unit testing method must be improved so that more defects can be found.
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PPB PPB 
 

PPBPPB’’

PPB’ is the improved PPB that the project may achieve 
after applying the improvements.

Processes, templates, checklists, training must be updated 
so that improvements permeate across the organization and 
become institutionalized.

With Pilot projects to confirm improvements.

Presenter
Presentation Notes
When projects are applying these improvements successfully, the improvements are applied into the Organization set of standard processes (OSSP) so that other projects will benefit from the improvements.
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PPBPPB’’

PPB’ of UT Defect Density (#Defects/Size KLoc)
UCL = 5.601

LCL = 1.005

PPB earlier was:
UCL = 5.828

LCL = 0.833

Average of Group Items XmR
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Presenter
Presentation Notes
Although the differences between the PPB’ and PPB are small, small incremental improvements continuously applied do make significant progress over a period of time.



Finding less defects may not mean the code is of high quality, maybe the UT was not adequately performed.

Finding more defects may not mean the UT was performed well but that there may have been many problems in the code or that the earlier peer reviews were not adequate.



PPB’ UCL – LCL width is about 4.6 (5.601 – 1.005) of defect density.
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PPBPPB’’ 
 

PPO (before using PPM)PPO (before using PPM)

Each iteration’s PPB’ is used as the interim PPO for the 
next iteration or similar project.

PPB’ as PPO must be derived and calculated from 
adjustments to historical data, not by guesswork, and is 
therefore a realistic objective.
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Presenter
Presentation Notes
A project having several iterations can have each iteration’s PPB’ used as the PPO for the next iteration.



Each improvement is considered by mathematically analyzing the PPB.

Each improvement can be mathematically calculated to quantitatively predict the amount of improvements.



The PPO is calculated, not guessed.
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PPBPPB’’ 
 

PPO (before using PPM)PPO (before using PPM)

Each subsequent iteration’s derived PPB and PPB’ gets 
better and better as improvements are continually and 
conscientiously applied by practitioners.

May not be for every iteration but for the overall project.
Average of Group Items XmR
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Data shown are not from the organization.

For illustration purpose only.

Presenter
Presentation Notes
Why a lower or higher control limits (finding less and less or more and more defects) may not be a good thing.

Do need to understand the projects, processes performances in earlier processes such as code reviews, document reviews.

More importantly, how can the defects be prevented instead of only focusing on detecting defects.



Conscientiously – project team members must remember why and how they are continuously applying the improvements.

It is a good thing to train the practitioners on why improvements have been made, the problems that we are trying to solve.

Improved templates should contain comments at the improvements to explain problems that are trying to be solved.�Only then the staff will understand potential problems and have the insight to foresee hence prevent future problems.



Since the QPPO are calculated from a PPB, the PPO is therefore based on past performance of projects and constrained by the inherent variability or natural bounds of the selected process or sub process. 
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PPOPPO (before using PPM)(before using PPM)

Each PPB’ incrementally progresses towards the VOB and 
VOC as improvements are continuously applied.

A process performance is therefore not immediately 
compared against its VOB or VOC.

Incremental calculated progress is planned with realistic 
timelines.

Presenter
Presentation Notes
At the beginning of each project, a Project improvement plan is developed which determines the process performance objectives.
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CorrelationCorrelation

Use PPB’ data to develop the 
correlations. 

Begin with a simple two 
variable regression that the 
practitioners can see and feel.

Output Y: #Defects found in a 
module during UT

Input X: Module Size KLoc

Tool needs to be interactive.

Linear Model y = mx + b

# 
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Code Size KLOC, X-axis

Linear Regression

y = 3.0399x + 2.8944
R2 = 0.8222
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Actual Y value Linear (# defects / Code Size KLOC)

Presenter
Presentation Notes
Something visual and tangible so that the practitioners can use and play with.�Modeling Tool needs to be interactive.

Check that the correlation is high. (A high correlation does not prove causality.)



The correlation is used to help the staff expect the number of defects they should find depending on the size of the module.



The correlation between the module size and defects was a way of introducing a correlation.

A graph that they can begin to use intuitively.  Tools that can be used intuitively are most useful.

It was a visual way of affirming their believe that there was a correlation.

The correlation graph helped them to explain their belief visually.



Do not immediately go into a full fledge PPM, that will scare away the staff.  Use something visual instead of mathematical.

That was why control charts were first used to develop the PPB and PPO.
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CorrelationCorrelation

Develop other correlations in 
separate regressions so that the 
practitioners can see how other 
variables affect the output Y.

Output Y: #Defects found in a 
module during UT

Input X: #Test cases to test the 
module

Linear Model y = mx + b
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Linear Regression

y = 0.1106x + 2.7877
R2 = 0.8155
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Actual Y value Linear (# defects / # UT Test Cases)

Presenter
Presentation Notes
When the staff are comfortable with the correlation between size and defects, include other variables that may not be so obvious.
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CorrelationCorrelation

Exceptions or other data points 
that were removed would not 
be in the PPB’ correlations

Output Y: #Defects found in a 
module during UT

Input X: Time spent to unit test 
the module

Linear Model y = mx + b
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Linear Regression

y = 1.3858x + 8.5538
R2 = 0.7073
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Presenter
Presentation Notes
Let the practitioners be the people who develop the correlation charts.  Let them decide the variables in the correlation.

Teach them, guide them but let them decide.
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CorrelationCorrelation

Include other correlations to 
see how variables affect each 
other.

Output: #Test cases to test the 
module

Input X: Module Size KLoc

Linear Model y = mx + b

X
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X1: Code Size KLOC, X-axis

Linear Regression

y = 26.85x + 9.2348
R2 = 0.9614
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Presenter
Presentation Notes
Later, the practitioners learn that one variable may affect the outcome of the other variable.

E.g. Code size will affect the number of test cases that should be written.
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CorrelationCorrelation

Include other correlations to 
see how variables affect each 
other.

Output: Time spent to unit test 
the module

Input X: #Test cases to test the 
module

Linear Model y = mx + b
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Linear Regression

y = 0.0702x - 0.7941
R2 = 0.894
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Presenter
Presentation Notes
Number of test cases will then affect the time taken in testing.

All these they may know already but now they have a visual way of describing what they knew all along!
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ModelingModeling

Later, include derived variables 
for modeling.

Output Y: #Defects found in a 
module during UT / Time Spent

Input X: #Test cases to test the 
module / Time Spent

Linear Model y = mx + b
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Linear Regression

y = 0.1616x - 0.6357
R2 = 0.6121
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Presenter
Presentation Notes
Later, be braver and try derived measures in the correlations to find out what more can be learnt.
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Linear Model y = mx + b
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Linear Regression

y = 0.1616x - 0.6357
R2 = 0.6121
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ModelingModeling

Include other analysis as 
required

One standard deviation around 
the average

Output Y: #Defects found in a 
module during UT / Time Spent

Input X: #Test cases to test the 
module / Time Spent

Presenter
Presentation Notes
Add in other ways of analysis.

E.g. the one standard deviation area around the average.

Take note that this analysis can only be performed when the Y and X axis have data that are normalized. (e.g. rate of testing, rate of finding defects).

This analysis helps the practitioners to learn how work can be performed within the one or two standard deviation boundary so that work can be more stable hence a more stable process.



Antagonistic measures to prevent sub optimization.

Usually, the X and Y axis in these analysis are having measures that are antagonistic.  I.e. a faster X may not result in a better Y.

The idea is to find a meaningful range to do the work to produce an acceptable result (not to be perfect).
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Frequency DistributionFrequency Distribution

Frequency distribution

Y/X

Y: #Defects found in a module 
during UT / Time Spent

X: #Test cases to test the 
module / Time Spent

Senior/Junior developers?

Other tests of normality may be 
applied.

Frequency Distribution
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Presenter
Presentation Notes
Since junior and senior developers were not part of the variables in the model.

From the frequency distribution, the staff realized that the data they were using should have been separated for junior and senior developers.

Other tests of normality may be required – e.g. tests for normal distribution.
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Average of Group Items XmR
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There may be other exceptions 
to be improved.

Y/X

Y: #Defects found in a module 
during UT

X: Time spent to unit test the 
module

Presenter
Presentation Notes
When using other correlations, other control charts may be needed to determine other assignable causes not captured in the first PPB control charts.
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PPMPPM

When the practitioners are comfortable with the 
correlations, develop the multiple regression model using 
the Xn variables.

Y: # Defects X1 : Code Size KLOC X2 : # UT Test Cases X3 : UT Testing Time Hrs
59 15.6 455 22.8

57 27.8 605 54

54 20.4 593 39.6

77 18.2 398 29.4

84 24 697 46.2

18 7.6 209 16.2

56 18.4 403 23.4

95 25 734 47.4

20 10.78 294 21

32 7.8 225 17.4

Data shown are just part of the complete set.

Presenter
Presentation Notes
When the staff are comfortable using correlations, it is time to introduce the concept of multiple regression.

Multiple regression is not obvious because it is not immediately visual.
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PPMPPM

Y = 1.958602086*X1 + 0.059436937*X2 - 0.270573847*X3 + 2.251835318

Confidence Level 95.00% 0.05 Alpha
Constant b set to zero? Non Zero

y=m1x1+m2x2+m3x3+…+b m1 m2 m3 b
Coefficients 1.958602 0.059437 -0.27057 2.251835318 Constant b

Standard Errors for mn 0.74684 0.029757 0.221569 2.183538832 Standard error for b
Upper 95.00% 3.44233 0.118555 0.169613 6.589816229
Lower 95.00% 0.474874 0.000319 -0.71076 -2.086145592

R2 0.830087394 10.55925 Standard error for Y estimate
F Statistics 146.5613558 90 df 1.5971E-34 F Distribution

ssreg 49023.8047 10034.8 ssresid

t-observed values 2.62252 1.9974 1.221169 1.03127789 1.986674497 t-critical
P-values 0.01025 0.048802 0.225211 0.305173947

Y: # Defects X1 : Code Size KLOC X2 : # UT Test Cases X3 : UT Testing Time Hrs

Presenter
Presentation Notes
Check which X-variables have p-values higher than alpha.

Could it be because the measures were not accurate at the time of collection?

Could it be because the measures did not have a high correlation with the output Y?

Could it be the way the measures were collected introduced other problems?  (Measures that were manually consolidated may have input errors.)

Sometimes, an X-variable having a high p-value may be caused by the interference of other X variables.



Although, the p-values may be high, the model may be more accurate with these X variables than without them.

Check the residuals of Y with and without these X variables.
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Modeling improvedModeling improved

As more analysis is performed, 
practitioners may realize that a 
linear regression may not be 
the case for some variables 
correlation.

Output Y: #Defects found in a 
module during UT

Input X: Module Size KLoc

Polynomial X2 Model y = m2x
2 + m1x + b
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Polynomial X2 Regression

y = -0.0448x2 + 4.3063x - 3.4798
R2 = 0.8315
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Presenter
Presentation Notes
We now try to find ways to see how we can alter the X variables so that their p-values can be made smaller.



As the practitioners get more comfortable with correlations and models, they will learn that some correlations may not be linear.

Some correlations may be better represented by a logarithmic, polynomial, or exponential trend.



When deciding which type of trendline to have,

We should not only look at R squared to check the correlation.

Does this trend better correspond to or reflect the behavior of the process?

That the larger the module size, the proportion of defects that could be found during unit testing decreases.
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Modeling improvedModeling improved

Greatest gradient is at 9 KLoc

Polynomial X2 Model y = m2x
2 + m1x + b
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Polynomial X2 Regression

y = -0.0448x2 + 4.3063x - 3.4798
R2 = 0.8315
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Linear Model y = mx + b
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Linear Regression

y = 3.0399x + 2.8944
R2 = 0.8222
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Defects Code Size Defect Density

0.781777055 1 0.781777055
4.953784418 2 2.476892209
9.036253663 3 3.012084554
13.02918479 4 3.257296197
16.93257779 5 3.386515559
20.74643268 6 3.45773878
24.47074945 7 3.495821349
28.10552809 8 3.513191012
31.65076862 9 3.516752069
35.10647103 10 3.510647103
38.47263532 11 3.497512302
41.74926149 12 3.479105124
44.93634954 13 3.456642273
48.03389947 14 3.43099282
51.04191129 15 3.402794086
53.96038498 16 3.372524061
56.78932055 17 3.340548268
59.52871801 18 3.307151
62.17857734 19 3.272556702
64.73889856 20 3.236944928
67.20968166 21 3.200461031
69.59092663 22 3.163223938
71.88263349 23 3.125331891
74.08480223 24 3.08686676
76.19743285 25 3.047897314
78.22052535 26 3.008481744

Presenter
Presentation Notes
Find the point that has the greatest gradient.

This point may represent the cut off point where modules larger than this become more difficult to detect errors during unit testing.

The idea then is to keep the modules smaller than or around this size (9KLoc).



The red triangle in the graph represents the average code size and average #defects found.

The average is around 12 KLoc.
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Modeling improvedModeling improved

Output Y: #Defects found in a 
module during UT / Time 
Spent

Input X: #Test cases to test the 
module / Time Spent

Polynomial X3 Model y = m3x
3 + m2x

2 + m1x + b
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Polynomial X3 Regression

y = -0.0033x3 + 0.1634x2 - 2.4375x + 12.683
R2 = 0.6837
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Linear Regression

y = 0.1616x - 0.6357
R2 = 0.6121
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Presenter
Presentation Notes
Usually it is the case that experience needs to be supported by data but with modeling, data needs to be supported by experience.

From experience, does the process have this behavior?

That when the testing rate (#test cases tested / testing time) is slow, the rate of finding defects is low?

That when the testing rate picks up speed, so does the rate of finding defects?

That the rate of finding defects has a peak and thereafter productivity drops?
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Modeling improvedModeling improved

Greatest gradient range:

15 – 23 test cases per hour.

Polynomial X3 Model y = m3x
3 + m2x

2 + m1x + b
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Polynomial X3 Regression

y = -0.0033x3 + 0.1634x2 - 2.4375x + 12.683
R2 = 0.6837
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Linear Model y = mx + b
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Linear Regression

y = 0.1616x - 0.6357
R2 = 0.6121
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Defects
/ Testing Time

UT Test cases
/ Testing time

Defects / UT 
Test Cases

1.347993798 10 0.13479938
1.24901571 11 0.113546883

1.258854477 12 0.10490454
1.357688464 13 0.104437574
1.525696034 14 0.108978288
1.743055554 15 0.116203704
1.989945388 16 0.124371587
2.246543901 17 0.132149641
2.493029458 18 0.138501637
2.709580423 19 0.142609496
2.876375161 20 0.143818758
2.973592038 21 0.141599621
2.981409418 22 0.13551861
2.880005665 23 0.125217638
2.649559146 24 0.110398298
2.270248224 25 0.090809929
1.722251265 26 0.066240433
0.985746634 27 0.036509135

Presenter
Presentation Notes
A good testing rate is around 15  to 23 test cases per hour.
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Modeling ImprovedModeling Improved

The residual of the polynomial 
X2 model should then be used 
in the XmR control chart to 
detect exceptions instead of 
Y/X.

Average of Group Items XmR
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# Defects Code Size
KLOC

# Defects /
Code Size KLOC

Polynomial X2

Residual

59 15.6 3.782051282 6.196259923

57 27.8 2.050359712 -24.63645579

54 20.4 2.647058824 -11.73795637

77 18.2 4.230769231 16.93414707

84 24 3.5 9.91519777

18 7.6 2.368421053 -8.662361209

56 18.4 3.043478261 -4.599406317

95 25 3.8 18.80256715

20 10.78 1.85528757 -17.73976155

32 7.8 4.102564103 4.614264586
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Presenter
Presentation Notes
If a different trend line is used other than linear regression, the residuals should be used in the XmR control charts.

4 out of 5 points outside -1 sigma

Residual is actual Y minus predicted Y

XmR control chart needs to be configured to use negative numbers

Notice how the residuals become less (more stable) later on in time.  This could be caused by an implementation of process improvement from point 55 onwards.
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PPM improvedPPM improved

The preferred regression 
formula is used in the multiple 
regression:

Y:
# Defects

Code Size KLOC 

-0.0448X1 ̂ 2 + 4.3063X1 - 3.4798

X2 : # UT
Test

Cases

X3 : UT
Testing

Time Hrs

59 52.80374 455 22.8

57 81.63646 605 54

54 65.73796 593 39.6

77 60.06585 398 29.4

84 74.0848 697 46.2

18 26.66236 209 16.2

56 60.59941 403 23.4

95 76.19743 734 47.4

20 37.73976 294 21

32 27.38574 225 17.4

Presenter
Presentation Notes
Try out this preferred regression to alter the X1 variable.

Will this improve the p-value?
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PPMPPM
Y: # Defects Code Size KLOC 

-0.0448X1 ̂ 2 + 4.3063X1 - 3.4798 X2 : # UT Test Cases X3 : UT Testing Time Hrs

Confidence Level 95.00% 0.05 Alpha
Constant b set to zero? Non Zero

y=m1x1+m2x2+m3x3+…+b m1 m2 m3 b
Coefficients 0.065908 0.119684 -0.21865 2.054101583 Constant b

Standard Errors for mn 0.095014 0.018365 0.229078 2.40169675 Standard error for b
Upper 95.00% 0.254669 0.15617 0.236454 6.825491266
Lower 95.00% -0.12285 0.083197 -0.67375 -2.717288101

R2 0.818075672 10.92611 Standard error for Y estimate
F Statistics 134.9037284 90 df 3.42911E-33 F Distribution

ssreg 48314.40909 10744.2 ssresid

t-observed values 0.693667 6.516767 0.954476 0.855271001 1.986674497 t-critical
P-values 0.489677 4.05E-09 0.342399 0.394672276

P-values did not improve so do not use the 
earlier regression formula for X1 .

Presenter
Presentation Notes
Nope, this method did not improve the p-values.  Therefore, do not use this in this example.

In other cases, this might have improved the p-values.



What is P-value?

If the P-value is less than Alpha, the probability of the

slope coefficient happening by chance is statistically

significantly small enough such that the null hypothesis

(that the slope is zero) can be rejected, and that the

slope coefficient is therefore useful.
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PPMPPM

Y = 1.912166199*X1 + 0.057942217*X2 -0.003927848*(X3 )^2 + 0

Constant b (intercept) set to zero

90% confidence level.  P-values have improved by using (X3 )^2.

Y: # Defects X1 : Code Size KLOC X2 : # UT Test Cases X3 : (UT Testing Time Hrs)^2

Confidence Level 90.00% 0.1 Alpha
Constant b set to zero? Zero

y=m1x1+m2x2+m3x3+…+b m1 m2 m3 b
Coefficients 1.912166 0.057942 -0.00393 0 Constant b

Standard Errors for mn 0.733273 0.027162 0.002075 #N/A Standard error for b
Upper 90.00% 3.130698 0.103079 -0.00048 #N/A
Lower 90.00% 0.693634 0.012805 -0.00738 #N/A

R2 0.955483871 10.45901 Standard error for Y estimate
F Statistics 651.0676344 91 df 1.21531E-54 F Distribution

ssreg 213662.4368 9954.563 ssresid

t-observed values 2.607713 2.133218 1.892992 #N/A 1.661771156 t-critical
P-values 0.010653 0.035598 0.061537 #N/A

Presenter
Presentation Notes
Try altering X3 to X3^2 (X3 squared).

Constant b (intercept) is set to zero because it had a p-value much higher than alpha.

P-values are now below Alpha if the 90% confidence level is used.



The staff then learns to use the PPM as guidance on how many defects they should find during unit testing given a module of a certain size.

Guidance on the # of UT test cases can be obtained from the earlier correlation (#Test Cases vs. Module code size).

Guidance on the testing time can be obtained from the earlier correlation (Testing Time vs. # Test Cases).



Later, the staff will rely more on this PPM and less on the correlations as they move away from a visual cue to something more malleable as we will soon find out.



Notice that the coefficient of X3: UT Testing Time is negative.  Does this mean that the more time spent in unit testing will result in fewer defects?

It may be that for modules that have a lot of defects, these defects would have been found within a short time.

For modules that have few defects or defects that were difficult to find, people spend more time looking for these defects resulting in a negative correlation.

This is one disadvantage in trying to predict defects, that once defects are predicted, people tend to spend more time looking for defects to make sure they meet the prediction.

This might or might not be a good thing.

In this presentation, let’s include the Testing Time input variable into the multiple regression.  In real life, you might want to consider not including the time variable.
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Monte Carlo with XMonte Carlo with X33 as (Xas (X33 )^2)^2

Simulation of the following:
X1 ranges from 1 to 50 KLOC of Module Size

X2 ranges from >= 1 Test Cases

(Max test cases simulated was up to 1448, correlated with file size)

(X3 )^2 ranges from >=1 Testing Time

(Max testing time simulated was up to 12624 hrs2, correlated with # test cases)

12624 hrs2 = (112.35 hrs)^2

100,000 simulations of 2,000 instances of UT

USL=5.601, LSL=1.005

Result: 97.4% >=LSL , 98.85% <= USL

96.25% within LSL and USL
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Data shown are of one instance of the simulation.

Presenter
Presentation Notes
When the staff are comfortable using the PPM to plan for the #defects they should find,

Introduce the concept that values of the X input variables can be simulated to help them understand how the output Y (#defects) can be affected.

The staff now learns to use the PPM to see what could happen depending on certain conditions.



In this simulation, X1:Module Size was simulated in the range from 1 to 50 KLOC.

X2:#Test Cases was simulated according to the earlier correlation (#Test Cases vs. Module Size) with random variations within the predicted intervals.

X3:Testing Time was simulated according to the earlier correlation (Testing Time vs. #Test Cases) with random variations within the predicted intervals.

Each simulation had 2,000 instances of unit testing and there were 100,000 simulations.



Result was 96.25% of the defect density of the unit tests were within LSL and USL.

In real life, is this result acceptable? Can we accept that only 96.25% of the unit tests met the process performance objectives?



The control chart and frequency distribution contained the first 100 data points of one instance.
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Optimum range of XOptimum range of X11 : Code Size: Code Size

To ensure PPO can be achieved or exceeded

Arrange the input variables in the possible permutations 
(2n) of their reasonable minimum and maximum values

X1 X2 X3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Y = 1.912166199*X1 + 0.057942217*X2 -0.003927848*(X3 )^2

Y: # Defects X1: Code 
Size 

KLOC

X2: # UT 
Test Cases

X3: UT 
Testing 
Time 
Hrs^2

2.47587698 1 10 4
Remove -ve Y 1 10 10000

88.8097803 1 1500 4
49.5470133 1 1500 10000
96.1720207 50 10 4
56.9092537 50 10 10000
182.505924 50 1500 4
143.243157 50 1500 10000

Copyright Rayney Wong

Presenter
Presentation Notes
Still needing something visual, the staff now wonders how the PPM spread over all the possible values of the X input variables.

One way of doing this is to arrange the X input variables minimum and maximum values in their possible permutations (2n).

The zero representing minimum, one representing maximum.

Let’s see how Y is spread across.  Negative Y is removed (in some cases, do not remove the negative Y).

We now have an idea of how Y varies.
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Code Size

y = 18.59 Ln ( x ) + 46.94
x =EXP (( y - 46.94) / 18.59)
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Optimum range of XOptimum range of X11 : Code Size: Code Size

Plot Y against X11 : Code Size

Code Size is the most important controllable factor

Keep all file sizes <= 12 KLoc during planning of the 
modules’ WBS (work breakdown structure)

The higher the gradient, usually the higher the productivity

Copyright Rayney Wong

Presenter
Presentation Notes
Let’s now plot this so that we have something visual that can be seen.

Plot Y (#defects) against X1 Module Code Size because code size determines the # Test Cases which then determines the Testing Time.

Add a linear trendline to see how Y (#defects) vary as the code size increases.

Add a non-linear trendline (such as logarithmic in this example) to see how Y varies logarithmically.

Does this represent real behavior:

That code size from 1 to 6 KLoc shows dramatic increases in the number of defects found.

That code size beyond 12 KLoc shows less increases (less gradient) in the number of defects found.

Common sense prevails on the extent we should strive for!



This is also consistent with the earlier correlation (#Defects vs. Module Code Size).



The idea is to keep within a range such that the proportion of defects found is high, meaning more defects found per module code size.



The staff now learns to use this idea earlier on in their work to plan how to structure the modules WBS.

I.e. the PPM is now used not only to control the unit testing process but also to determine how corrective actions can be applied to earlier processes to improve unit testing.



Consequently, the structuring of the module code size within this range also improved the code reviews (co-worker (pair-wise) reviews and peer reviews).
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Optimum range of XOptimum range of X11 : Code Size: Code Size

Defects Code Size

95.83397868 13.8528494
95.02715121 13.26478748
94.22032373 12.70168915
93.50146522 12.22015383
93.48747921 12.21096848
91.55774891 11.00759279
90.42074775 10.35485998
89.61403259 9.915349726

88.9882957 9.58732721
88.66999985 9.424657582
88.47703144 9.327385204
86.95887644 8.596311257
86.15204896 8.231392594
85.34522148 7.88196495
84.53839401 7.547370724
83.73156653 7.226980226
82.92473905 6.920190501
82.11791157 6.626424188

81.3110841 6.345128433
80.50425662 6.075773856
79.69742914 5.817853544
78.89060167 5.570882108

Copyright Rayney Wong
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Presenter
Presentation Notes
Beyond code size of 12KLOC, the gradient for finding defects become less and less, implying that defects are harder to find in larger pieces of code.





November 19, 2008 Ritmico Progress 46

Monte Carlo with XMonte Carlo with X33 as (Xas (X33 )^2 with Optimum Ranges)^2 with Optimum Ranges

Simulation of the following:
X1 ranges from 6 to 12 KLOC of Module Size

X2 ranges from >= 1 Test Cases

(Max test cases simulated was up to 428, correlated with file size)

(X3 )^2 ranges from >=1 Testing Time

(Max testing time simulated was up to 3245 hrs2, correlated with # test cases)

3245 hrs2 = (57 hrs)^2

100,000 simulations of 2,000 instances of UT

USL=5.601, LSL=1.005

Result: 99.95% >=LSL , 100% <= USL

99.95% within LSL and USL

Data shown are of one simulation.

Presenter
Presentation Notes
We now apply the monte carlo simulation again but this time with the range of the module code size from 6 to 12 KLoc.

The result is 99.95% of unit testing instances simulated has defect density of 99.95% that meets the Process Performance Objective.

Is this good?

Is this realistic?

Who should answer these questions?
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Monte Carlo with XMonte Carlo with X33 as (Xas (X33 )^2 with Optimum Ranges)^2 with Optimum Ranges
Frequency Distribution
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LNPL from Average of Defect Density
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Specification Center Line

Lower Specification Limit LSL

Data shown are of one instance of the simulation.

Presenter
Presentation Notes
Frequency distribution chart of an instance of a simulation for the first 100 data points, showing all instances within the PPO.
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Monte Carlo with XMonte Carlo with X33 as (Xas (X33 )^2 with Optimum Ranges)^2 with Optimum Ranges

Data shown are of one simulation.

Average of Group Items XmR

0

1

2

3

4

5

6

Index of
time-

sequenced
Defect
Density
Y/X1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Index

G
ro

up
 It

em
 V

al
ue

USL Spec CL LSL Defect Density
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CL Average of Defect Density
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Median of Defect Density
Y/X1

Item not included in limits calculations 14 points up and down

14 points above below CL Average 8 above below 1 sigma using Average 8 points above CL Average 8 points below CL Average

Trend of 6 points Increasing Trend of 6 points Decreasing 4 out of 5 points outside +1 sigma using Average 4 out of 5 points outside -1 sigma using Average

2 out of 3 Points outside +2 Sigma using Average 2 out of 3 Points outside -2 Sigma using Average Outside 3 Sigma using Average Not included Y / Not included X

Data shown are of one instance of the simulation.

Presenter
Presentation Notes
Control chart of the first 100 data points.



Assignable causes:

14 consecutive points up and down.

Trend of 6 points incresing.



UCL is 4.27

LCL is 2.02

A width (UCL – LCL) of about 2 defect density, compared against the original PPB’ USL – LSL of 4.6 defect density.

Can this be the new PPO to strive for?
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Monte Carlo with XMonte Carlo with X33 as (Xas (X33 )^2 with Optimum Ranges)^2 with Optimum Ranges

Hypothesis Test for a Population Mean.  If Null Hypothesis: mu varies, what happens to z ?
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Standard Score z if mu varies X What is mu if z is -1.96 ?

95% confidence level of defect density: 3.07 – 3.22

USL=5.601, LSL=1.005

Data shown are of one simulation.

Data shown are of one instance of the simulation.

Presenter
Presentation Notes
Chart showing how the average of the simulated instances can vary within its 95% confidence interval.

Each simulation has 2000 instances, the average of the 2000 instances in each simulation, how the average can vary.



The average defect density according to the distribution of sample means is from 3.07 to 3.22.



The two blue graphs use the blue Y axis on the left (P-values).

The orange line uses the orange Y axis on the right (Standard Score).

The X axis is for how the P-values and Standard Score are affected as the null hypothesis varies.





November 19, 2008 Ritmico Progress 50

Monte Carlo with XMonte Carlo with X33 as (Xas (X33 )^2 with Optimum Ranges)^2 with Optimum Ranges

Simulation of the following:
X1 ranges from 6 to 50 KLOC of Module Size

X2 ranges from >= 1 Test Cases

(Max test cases simulated was up to 1444, correlated with file size)

(X3 )^2 ranges from >=1 Testing Time

(Max testing time simulated was up to 11418 hrs2, correlated with # test cases)

11418 hrs2 = (106 hrs)^2

100,000 simulations of 2,000 instances of UT

USL=5.601, LSL=1.005

Result: 99.95% >=LSL , 100% <= USL

99.95% within LSL and USL

Code Size

y = 18.59 Ln ( x ) + 46.94
x =EXP (( y - 46.94) / 18.59)
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Presenter
Presentation Notes
The staff now learns to simulate other ranges of module code size.

This time from 6 to 50 KLoc.

The result is also 99.95% within the PPO.

Is this good?

The staff later learns that maybe they would be more interested in the range that will not meet the PPO.

That it is better to know the circumstances that may not meet the PPO.

They develop a need to know what may not work.
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Monte Carlo with XMonte Carlo with X33 as (Xas (X33 )^2 with Optimum Ranges)^2 with Optimum Ranges

Simulation of the following:
In reality, there will be module Module Size of < 6

X1 ranges from 1 to 12 KLOC of Module Size

X2 ranges from >= 1 Test Cases

(Max test cases simulated was up to 428, correlated with file size)

(X3 )^2 ranges from >=1 Testing Time

(Max testing time simulated was up to 3273 hrs2, correlated with # test cases)

3273 hrs2 = (57.2 hrs)^2

100,000 simulations of 2,000 instances of UT

USL=5.601, LSL=1.005

Result: 92.55% >=LSL , 96.85% <= USL

89.40% within LSL and USL

Code Size

y = 18.59 Ln ( x ) + 46.94
x =EXP (( y - 46.94) / 18.59)

0
20
40
60
80

100
120
140
160
180
200

0 10 20 30 40 50 60

Code Size
D

ef
ec

ts

X1: Code Size KLOC LSL USL Linear (X1: Code Size KLOC) Log. (X1: Code Size KLOC)

Presenter
Presentation Notes
This time, apply the simulation of Module Size from 1 to 12 KLOC.

The result is now 89.40% of the simulations within the PPO.

The staff now develops a deeper understanding on situations that may cause the PPO not to be met.
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Monte Carlo with XMonte Carlo with X33 as (Xas (X33 )^2 with Optimum Ranges)^2 with Optimum Ranges

Simulation of the following:
X1 ranges from 1 to 6 KLOC of Module Size

X2 ranges from >= 1 Test Cases

(Max test cases simulated was up to 264, correlated with file size)

(X3 )^2 ranges from >=1 Testing Time

(Max testing time simulated was up to 2725 hrs2, correlated with # test cases)

2725 hrs2 = (52.2 hrs)^2

100,000 simulations of 2,000 instances of UT

USL=5.601, LSL=1.005

Result: 85.2% >=LSL , 93.8% <= USL

79% within LSL and USL

Code Size

y = 18.59 Ln ( x ) + 46.94
x =EXP (( y - 46.94) / 18.59)
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Presenter
Presentation Notes
If we repeat the simulation again within the range of 1 to 6 KLoc,

The result is 79%.
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Code Size

y = 18.59 Ln ( x ) + 46.94
x =EXP (( y - 46.94) / 18.59)
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Monte Carlo with XMonte Carlo with X33 as (Xas (X33 )^2 with Optimum Ranges)^2 with Optimum Ranges

In the simulation of module size between 1 to 6, reasons for 
having many instances below LSL:

# of test cases was not enough or there were zero defects simulated.

Linear Model y = mx + b

X
2:
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X1: Code Size KLOC, X-axis

Linear Regression

y = 26.85x + 9.2348
R2 = 0.9614
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X2: # UT Test Cases / X1: Code Size KLOC Not included X2: # UT Test Cases / Not included X1: Code Size KLOC

Actual Y value Linear (X2: # UT Test Cases / X1: Code Size KLOC)

Module Size Range KLOC 1 to 6 1 to 12 1 to 50 6 to 12 6 to 50
LSL >= 85.20% 92.55% 97.40% 99.95% 99.95%
<= USL 93.80% 96.85% 98.85% 100.00% 100.00%

Within LSL and USL 79.00% 89.40% 96.25% 99.95% 99.95%

Presenter
Presentation Notes
For the simulation of module size between 1 to 6, we now look at the instances generated and see why there were not many errors found (low defect density) during the unit testing.

We realize that in most cases, there were not many test cases generated.

The staff now learns that this is a potential risk, that if insufficient test cases were generated for the codes, not enough errors might be found.



The correlation or the PPM can be used to determine the number of test cases that should be developed according to the code size of the module.  The graph on the bottom right shows the correlation of #Test Cases vs. Code Size.



They now take care of this during planning of the number of test cases to be developed (allocating time to develop the test cases and time to perform the unit tests).



From this, the staff learns that it is sometimes more useful to understand how the PPO may not be met instead of only understanding how the PPO can be met.
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Final DecisionFinal Decision

X1 ranges from 1 to 12 KLOC of Module Size
Only a guideline, not an enforcement

6 KLOC was too stringent an upper limit, and

There will also be modules requiring < 6 KLOC, but

When breaking the modules into sub modules, aim for sub module size >= 6, E.g.:

Two sub modules, each 6 KLoc is better than (2, 10) or (3, 3, 3, 3)

Need practitioners to agree this makes sense

X2 Test Cases:
Ensure there is enough, use the PPM for guidance

(X3 )^2 Testing Time:
Likewise, use the PPM for guidance

Presenter
Presentation Notes
Final decision from the analysis of the PPM is to plan for the structuring of the modules into sub-modules.

Each sub-module having a size of no more than 12 KLoc.

We can then better ensure that unit testing can better find defects in the code.



Try maintaining the sub module size to be within 6 to 12 KLoc.  From the monte carlo analysis, 6 to 12 is the best range.

Historical data shows that when module size is less than 6, staff tends not to write enough test cases.

When module size is more than 12, unit testing becomes more difficult so defects are harder to find.
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Final DecisionFinal Decision

Simulated PPB ctrl limits:
UCL = 5.92 defect density

LCL = 0.31

PPB’
UCL = 5.601

LCL = 1.005

Need to also control:
# Test Cases

November 19, 2008 Ritmico Progress 54

Code Size

y = 18.59 Ln ( x ) + 46.94
x =EXP (( y - 46.94) / 18.59)
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Monte Carlo with XMonte Carlo with X33 as (Xas (X33)^2 with Optimum Ranges)^2 with Optimum Ranges

Simulation of the following:
In reality, there will be module Module Size of < 6

X1 ranges from 1 to 12 KLOC of Module Size

X2 ranges from >= 1 Test Cases

(Max test cases simulated was up to 428, correlated with file size)

(X3)^2 ranges from >=1 Testing Time

(Max testing time simulated was up to 3273 hrs2, correlated with # test cases)

3273 hrs2 = (57.2 hrs)^2

100,000 simulations of 2,000 instances of UT

USL=5.601, LSL=1.005

Result: 92.55% >=LSL , 96.85% <= USL

89.40% within LSL and USL
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4 out  of 5 points outside -1 sigma using Average 2 out of 3 Points outside +2 Sigma using Average 2 out of 3 Points outside -2 Sigma using Average
Outside 3 Sigma using Average Not included Y: # Defects / Not included X1: Code Size KLOC

Presenter
Presentation Notes
From the simulation we did of module size ranging from 1 to 12 KLoc,

The simulated control limits were from 0.31 to 5.92 (a width of 5.62 defect density).

This width is more than PPB’ control limits. 89.4% was within the PPB’ LSL and USL.

From our earlier analysis, the simulations showed that if the # of test cases are not controlled, even though we control the range of the module size, the PPO may not be achieved.
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Final DecisionFinal Decision

Module size from 1 to 12 KLoc

Test Cases variation : Calculated + - 50 (slide 26)

Testing time variation : Calculated + - 10 hrs (slide 27)

Simulated PPB ctrl limits:
UCL = 4.86 defect density

LCL = 2.12

PPB’
UCL = 5.601

LCL = 1.005

Average of Group Items XmR
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USL Spec CL LSL
Y / X CL Average of Y / X Median of Y / X
Item not included in limits calculations 14 points up and down 14 points above below CL Average
8 above below 1 sigma using Average 8 points above CL Average 8 points below CL Average
Trend of 6 points Increasing Trend of 6 points Decreasing 4 out of 5 points outside +1 sigma using Average
4 out of 5 points outside -1 sigma using Average 2 out of 3 Points outside +2 Sigma using Average 2 out of 3 Points outside -2 Sigma using Average
Outside 3 Sigma using Average Not included Y: # Defects / Not included X1: Code Size KLOC

Presenter
Presentation Notes
If we control the Test Cases to vary by plus minus 50 and the testing time by plus minus 10 hrs, the simulated PPB control limits are very much within the PPO (PPB’).

It is therefore crucial that not only do we need to control the module size, we also need to ensure there are enough test cases for the modules.



Assignable cause shown in picture:

2 out of 3 points outside +2 sigma

1 point outside +3 sigma
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E.g. Module Size 9 E.g. Module Size 9 KLocKLoc
Size of module (KLoc): 9

QPPO USL 5.601 50.409

QPPO LSL 1.005 9.045

Y: # 
Defects

X1: Code 
Size 

KLOC

X2: # UT 
Test Cases 

(Ideal)

X3: UT 
Testing 
Time 
Hrs^2 
(Ideal)

X3: UT 
Testing 

Time Hrs 
(Ideal)

30.63356 9 250.8809 283.2419 16.82979
# UT Test Cases = (26.85* module code size + 9.23)

UT Testing Time2 =(0.07* Test Cases - 0.79)^2

y = m1x1 + m2x2 + m3x3 + b m1 m2 m3 b
Coefficients 1.912166 0.057942 -0.00393 0

Y: # 
Defects

X1: Code 
Size 

KLOC

X2: # UT 
Test Cases 

(min, 
max)

X3: UT 
Testing 
Time 
Hrs^2 
(min, 
max)

X3: UT 
Testing 

Time Hrs 
(min, 
max)

17.26351 9 1 1 1
3.638934 9 1 3469.713 58.90427
75.35195 9 1003.524 1 1
61.72737 9 1003.524 3469.713 58.90427

Expected defects to be found 
according to PPO and size of 
module

Presenter
Presentation Notes
For example, we have a module of code size 9 KLoc.

According to the defect density PPO, we should find within 9 to 50 defects.

How many UT Test Cases should we have : about 250 test cases.  Using the correlation formula we found earlier (Test Cases vs. Code Size).

How much time should we spend performing unit teesting : about 17 (16.8) hrs .  Using the correlation formula we found earlier (Testing Time vs. Test Cases).

We should then find 30 defects which is within the PPO USL and LSL.



We now put these values into the monte carlo simulation for the following:

Code size is fixed at 9 KLoc

UT Test Cases ranges from 1 to 1003 (max may be more in the simulation)

UT Testing Time ranges from 1 to 59 (max may be more in the simulation)
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E.g. Module Size 9 E.g. Module Size 9 KLocKLoc

81.95% USL — LSL

Module code size
9 KLoc

UT Test Cases
1 – 1003

UT Testing Time
1 – 81 hrs

PPO is too wide
Common problems
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Presenter
Presentation Notes
The result of the simulation is 81.95% within the USL and LSL (PPO).

The simulation for 9 KLoc of module code size shows that Test Cases and Testing Time can vary a lot and still meet the PPO.

This means the PPO USL and LSL are too wide.  There is room to improve the process and narrow the distance between the USL and LSL.

This will require analyzing the common problems.

The orange lines represent the earlier simulated PPB of module size from 1 to 12 KLoc with Test Cases to vary by plus minus 50 and the testing time by plus minus 10 hrs.



The simulations show that the Test Cases are distributed within a narrow band indicating that the X2 Test Cases is relevant in the PPM.

Whereas the Testing Time has a wide distribution.  Perhaps X3 should be removed from the PPM.
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E.g. Module Size 9 E.g. Module Size 9 KLocKLoc

100% USL — LSL

Module code size
9 KLoc

UT Test Cases
200 – 300

UT Testing Time
9 – 22 hrs
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Presenter
Presentation Notes
If we can control the size of the test cases between 200 and 300, and

If we can control the testing time between 9 and 22 hours,

We should be able to achieve the simulated PPB.

This will require CAR and OID.
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Average of Group Items XmR
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Presenter
Presentation Notes
A PPM’ is then developed using the measures of the improved PPB.  This PPM’ then represents the possible improved process.  A project now has the PPM and PPM’ or other PPM’ for different improvements.  Using these PPMs, the project composes its defined process (selecting to use the process as is or with improvements) by comparing the possible achievements and improvement costs of the different PPMs, as well as mathematically considering the changes necessary to achieve a better PPO. 
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Process Performance parameters ConsiderationsProcess Performance parameters Considerations

Presenter
Presentation Notes
PPM evolution

Using the mind mapping idea, map the possible parameters that may influence the unit testing process into different categories.



Who should be involved in brain-storming the parameters?

Practitioners, stakeholders, users
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Unit Testing Process possible parametersUnit Testing Process possible parameters

Process Parameters:
Test effort
#Test cases
Test case complexity
Tester training type, time, effectiveness
Tested Frequency
Tester Experience

Output:
#Defects Found
Test Coverage %
Remaining #defects

Product Parameters:
Product Module size
Programming language
Product Module complexity
#Changes LOC
Rework Effort
Author Experience
Module development effort

Standards:
Test case density
Product standards
Test case guidelines

Interacting Process:
#SQA audit on writing the test cases
#Non-compliances found by QA
Test case review time
#Issues found in test case review

Unit Testing Process

Equipment, Tools, Environment:
Tools:
-WinRunner
-LoadRunner
Methods:
-White box testing
-Black box testing

Take care of discrete variables which 
cannot be used in multiple regression.

Presenter
Presentation Notes
What are the parameters that may influence the unit testing process?

Take care that discrete variables are not used as variables in the multiple regression.
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UT Testing ProcessUT Testing Process

Selected parameters:
Y = #Test Defects Found

X1 = Test Effort - controllable

X2 = #Test Cases – controllable during planning

X3 = Tested Frequency (# times tested) - controllable

X4 = Product module size – controllable during planning

X5 = Development Effort – need more consideration

Presenter
Presentation Notes
Could this be a more complete PPM?

Take note of the problems found earlier in the Test Effort measures.

Why having too many variables may not make a better PPM?
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Questions?Questions?

Ritmico Progress, Rayney Wong

Rayney@RitmicoProgress.com
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