

Applying Technical Readiness Levels to Software:
New Thoughts and Examples

James R. Armstrong
Stevens Institute of Technology

Castle Point on Hudson
Hoboken, NJ 02070

Copyright © 2010 by James R. Armstrong. Published and used by INCOSE with permission.

Abstract. The concept of Technical Readiness Levels has been applied to software. However, the
criteria for levels are more related to design maturity of a specific product than to software
technologies. This paper reviews the current work and addresses areas that are more technology
related including examples.

Technical Readiness Levels in Programs
Introduction. Programs that are pushing the technical envelope can run into serious problems
when they are relying on critical technologies that have not been proven and do not mature to a
useable state in time. This has been a serious problem with large government programs that are
aiming at the maximum performance advantage. The concept of Technical Readiness Levels
(TRLs), introduced by NASA, has evolved as one approach to managing the technical maturity
risk. The US Department of Defense positions TRLs in this role in response to various GAO
reports in the Technology Readiness Assessment (TRA) Deskbook (DoD, 2005). The
combination of TRLs at the macro level with Technical Parameter Measurements (TPMs) at the
micro level as been proposed as a combined means for mapping and monitoring the Technical
Critical Path in a development program (Armstrong, 2009).

The issue with this approach is that the original concept of TRLs was focused on, or at least
phrased in terms of, hardware. As large, complex systems are becoming more dependent on
software for critical performance functionality, the application of TRLs to software gains
importance. Both NASA and DoD have developed descriptions for software TRLs. However,
both versions tend to be more descriptive of specific product maturity than the general
development of a technology. The following sections will address the existing definitions of
hardware and software TRLs and propose extended definition of application to software
technology as opposed to software products.

Basic Technical Readiness Levels. NASA introduced the concept of TRLs as a means to track
the progress of a new technology and determine how far it was along the path from just a novel
idea to being ready for prime time. The nine levels are shown in figure 1 along with a short
description.

The lower readiness levels address technologies that are typically being investigated in laboratory
experiments. An example of a technology in this region would be single electron logic gates that
are based on electron spin and quantum mechanics. While the actual electron gate is obviously
small, the apparatus used to operate a single gate is a sizable set of laboratory equipment. Do not
expect this technology to be appearing in stores soon.

Figure 1, NASA Technolgy Readiness Levels
In the mid range, an example might
be the aerospike engine. The concept
is depicted in Figure 2. The normal
bell shaped engine is only optimal at
one altitude where the shape of the
bell matches the flow characteristics
for the atmospheric pressure at that
point in the trajectory. In multistage
rockets, each stage has a different
shape optimized for its range. When
designing for a single stage flight to
orbit, this creates a problem. One
solution is to effectively reverse the
design and place the bell on the inside
letting the outside vary with the flow
of the atmosphere as pressure
changes.

The linear form, as shown in the figure, was part of the X-33 program. Other engines using a
circular form have been applied in smaller rocket projects. The design has been around for many
years and much is known about it. However, it is not to the point that it can be selected for the next
moon launch design.

The highest levels require that the technology be tested, demonstrated, or actually used in
simulated or real environments. Technology that is currently in use in the shuttle or space station
certainly qualifies as would a new technology that undergoes thermal and vacuum testing to prove

that it’s ready for launch. Simulated environments uncover such problems as the satellite that
would operate in space, but would not have been warm enough to turn on had it been launched
without space environment testing.

Software TRLs. Although not specifically excluding software, most of the emphasis in the initial
TRL work was on hardware technologies similar to the examples given. The question has been
asked, “How do these concepts apply to software?” Several efforts have addressed this question.
However, most of the factors are more design maturity issues than to technology readiness. In
fact, the appropriate application of the term technology to software is not really addressed.

One of the most referenced sources on this topic is an SEI report TRLs for non-developmental
software (Smith, 2005). It describes several concerns that should be addressed in selecting
off-the-shelf software products from commercial, government, or internal sources including open
source. The attributes that are proposed to determine a TRL are requirements satisfaction,
environmental fidelity, product criticality, product aging - availability and product aging –
maturity. Although these are important factors to consider, they are descriptions of a specific
product and its design status. Generally speaking, a software technology must have reached a
reasonably high level of maturity for it to already be in use in an off-the-shelf product.

NASA has provided its own extension of the TRL definitions for software (NASA 2008) as shown
in Table 1. I should be noted that the lower levels address architecture, mathematical formulation,
and algorithms. The language quickly changes to coded principles, experiments with data,
functionality, component integration, and removal of bugs. While the general flow from lab to
actual operational environment remains, the focus is clearly on design of a specific product
without a clear idea of technology. This view is certainly valid and important in developing the
software that will be used in a specific program; however, it still lacks the taste of technology that
can be sensed in the hardware world.

TRL Description

1 Scientific knowledge generated underpinning basic properties of software architecture
and mathematical formulation.

2 Practical application is identified but is speculative, no experimental proof or detailed
analysis is available to support the conjecture. Basic properties of algorithms,
representations and concepts defined. Basic principles coded. Experiments performed
with synthetic data.

3 Development of limited functionality to validate critical properties and predictions using
non-integrated software components.

4 Key, functionally critical, software components are integrated, and functionally
validated, to establish interoperability and begin architecture development. Relevant
Environments defined and performance in this environment predicted.

5 End-to-end software elements implemented and interfaced with existing
systems/simulations conforming to target environment. End-to-end software system,
tested in relevant environment, meeting predicted performance. Operational
environment performance predicted. Prototype implementations developed.

6 Prototype implementations of the software demonstrated on full-scale realistic problems.
Partially integrate with existing hardware/software systems. Limited documentation
available. Engineering feasibility fully demonstrated.

7 Prototype software exists having all key functionality available for demonstration and
test. Well integrated with operational hardware/software systems demonstrating
operational feasibility. Most software bugs removed. Limited documentation available.

8 All software has been thoroughly debugged and fully integrated with all operational
hardware and software systems. All user documentation, training documentation, and
maintenance documentation completed. All functionality successfully demonstrated in
simulated operational scenarios. Verification and Validation (V&V) completed.

9 All software has been thoroughly debugged and fully integrated with all operational
hardware/software systems. All documentation has been completed. Sustaining software
engineering support is in place. System has been successfully operated in the operational
environment.

Table 1. NASA Software TRL Descriptions
The US Department of Defense has developed a definition of TRLs for software as shown in table
2. As can be seen, it follows the NASA descriptions rather closely. In doing so, it has the same
bias towards the product maturity of a specific software product.

TRL Description Supporting Information
1 Basic principles
observed and
reported.

Lowest level of software technology
readiness. A new software domain is being
investigated by the basic research community.
This level extends to the development of basic
use, basic properties of software architecture,
mathematical formulations, and general
algorithms.

Basic research activities, research articles,
peer-reviewed white papers, point papers,
early lab model of basic concept may be
useful for substantiating the TRL level.

2 Technology
concept and/or
application
formulated.

Once basic principles are observed, practical
applications can be invented. Applications are
speculative, and there may be no proof or
detailed analysis to support the assumptions.
Examples are limited to analytic studies using
synthetic data.

Applied research activities, analytic studies,
small code units, and papers comparing
competing technologies.

3 Analytical and
experimental
critical function
and/or
characteristic
proof
of concept.

Active R&D is initiated. The level at which
scientific feasibility is demonstrated through
analytical and laboratory studies. This level
extends to the development of limited
functionality environments to validate critical
properties and analytical predictions using
nonintegrated software components and
partially representative data.

Algorithms run on a surrogate processor in a
laboratory environment, instrumented
components operating in laboratory
environment, laboratory results showing
validation of critical properties.

4 Module and/or
subsystem
validation in a
laboratory
environment (i.e.,
software
prototype
development
environment).

Basic software components are integrated to
establish that they will work together. They are
relatively primitive with regard to efficiency
and robustness compared with the eventual
system. Architecture development initiated
to include interoperability, reliability,
maintainability, extensibility, scalability, and
security issues. Emulation with current/ legacy
elements as appropriate. Prototypes
developed to demonstrate different aspects of
eventual system.

Advanced technology development,
stand-alone prototype solving a synthetic
full-scale problem, or standalone prototype
processing fully representative data sets.

5 Module and/or
subsystem
validation in a
relevant
environment.

Level at which software technology is ready to
start integration with existing systems. The
prototype implementations conform to target
environment/interfaces. Experiments with
realistic problems. Simulated interfaces to

System architecture diagram around
technology element with critical performance
requirements defined. Processor selection
analysis, Simulation/Stimulation (Sim/Stim)
Laboratory buildup plan. Software placed

existing systems. System software
architecture established. Algorithms run on a
processor(s) with characteristics expected in
the operational environment.

under configuration management.
COTS/GOTS in the system software
architecture are identified.

6 Module and/or
subsystem
validation in a
relevant
end-to-end
environment.

Level at which the engineering feasibility of a
software technology is demonstrated. This
level extends to laboratory prototype
implementations on full-scale realistic
problems in which the software technology is
partially integrated with existing
hardware/software systems.

Results from laboratory testing of a prototype
package that is near the desired configuration
in terms of performance, including physical,
logical, data, and security interfaces.
Comparisons between tested environment
and operational environment analytically
understood. Analysis and test measurements
quantifying contribution to system-wide
requirements such as throughput, scalability,
and reliability. Analysis of human-computer
(user environment) begun.

7 System
prototype
demonstration in
an operational
high-fidelity
environment.

Level at which the program feasibility of a
software technology is demonstrated. This
level extends to operational environment
prototype implementations where critical
technical risk functionality is available for
demonstration and a test in which the software
technology is well integrated with operational
hardware/software systems.

Critical technological properties are measured
against requirements in a simulated
operational environment.

8 Actual system
completed and
mission qualified
through test and
demonstration in
an operational
environment.

Level at which a software technology is fully
integrated with operational hardware and
software systems. Software development
documentation is complete. All functionality
tested in simulated and operational scenarios.

Published documentation and product
technology refresh build schedule. Software
resource reserve measured and tracked.

9 Actual system
proven through
successful
mission-proven
operational
capabilities.

Level at which a software technology is readily
repeatable and reusable. The software based
on the technology is fully integrated with
operational hardware/software systems. All
software documentation verified. Successful
operational experience. Sustaining software
engineering support in place. Actual system.

Production configuration management
reports. Technology integrated into a reuse
“wizard”; out-year funding established for
support activity.

Table 2. DoD Software TRL Descriptions

Software Technologies
Technology versus Product. The development of a single product may advance a technology, or
at least address specific issues of its application in a particular application. Hardware technologies
are things most people can relate to. Cell phone systems, flat screen displays, electric automobiles,
touch screens, and microwave heating are understood to be technologies as opposed to the specific
products that use them. There are several analogous technologies and categories of technologies
for software. By identifying them as such, the application of TRLs to software-intensive programs
can be more effective.

Algorithms. The NASA and DoD descriptions to include algorithms in their discussion of TRLs.
However, their definition and development are only referred to in levels 1 and 2. Later mention in
the DoD version is limited in context to the processor they run on. A broader context would be to
define the type of algorithm and its maturity in regard to a class of products in which it can be
applied. An example would be the algorithms that are used to detect missile launches from space.
When the Defense Support Program was in its early stages, there was considerable concern as to

whether or not the software could detect a missile launch, given the IR data that the sensors would
provide. There was no prior history to rely on and the maturity would have to be scored as a low
TRL. A low orbit prototype gave some credence to the technology and moved it to a mid range
value. However, that data was not from the orbit and with the sensors that would be in the actual
system. Problems were solved and the system worked. Today, there is not much question that the
algorithm can perform in another application. It may slip back a few levels if new sensors or
systems architectures are used but not back to the lower levels as a general technology.

In the civilian world, aircraft collision avoidance algorithms have similarly matured. The testing
of decades ago to see if such a concept was at all feasible have passed and we are now in the stage
of application to products. Improvements in the algorithms are certainly being developed but the
overall technology is mature.

Commercially, the technology of the search engine has become very mature. We rely on it in
various applications on a regular basis. New products continue to arrive on the market and old
ones are upgraded.

The upper levels of TRL which address specific environments continue to be applicable. For
instance, if applying a commercial product, or reuse a component from a prior application, we
have to ask whether the product and its technology have been applied in this specific application.
One example would be the use of commercial search engines or other software technology in a
security or safety driven application. Another would be the reuse within a similar but different
environment as was the case with the Arian V.

Languages. One of the first questions asked of an applicant for a programmer position concerns
languages. As new languages are developed for various reasons, there is a normal tendency to
jump on the bandwagon and claim that all the old problems have been solved. Premature use of a
new language can be very problematic for several reasons. First, the developers have not learned
its strengths and weaknesses, or its traps. Many times programmers will continue to use the
methods they learned with prior languages and undermine the benefits of the new language. The
support environment may not be fully developed and compilers, debuggers, and other tools are not
in place or fully developed. These problems were certainly seen in the introduction and use of Ada
and, in addition to being “that DoD mandated language”, helped limit its popularity and effective
use.

Architectures. As new approaches to the overall architecture of software systems are developed,
they need to be looked at from a TRL point of view. We now are being deluged with discussion of
Service Oriented Architectures as being the ultimate solution to everything. In a related vein,
cloud computing is also becoming an in vogue buzzword. However, we need only look back to
how past architectural technologies were over applied in inappropriate situations to see where a
new technology needs to be more carefully thought through before immediate use. In the early
days of local network, one organization decided to interconnect all of the computers using a central
server-based software architecture. Unfortunately, the computer selected had very limited
input/output capability and the mass memory was tape technology. When using the word
processing function, keyboard inputs regularly were delayed by a few seconds as they waited in
the 2800 baud queue. More importantly, bringing up an existing document to work on it involved
calling the computer center to find the correct tape. The users revolted and the system was soon
abandoned. Other, more successful applications of this centralized processing architecture worked
well for those in the building but performed miserably for a significant part of the workforce that

were working remote either permanently or on travel status.

Design methods. The initial software functional design technology was very effective, and
remains so, for algorithmic calculation. As more database oriented applications came about, the
approach of Object Oriented Analysis (OOA) and Object Oriented Design (OOD) were developed.
For the purpose it was invented, it was very effective. It did take a while for the best practices to be
developed and communicated. Now, it is considered a common approach to use OO and there are
large numbers of options for detailed methodologies and tools to support it. Of course, it became
the favored approach for everything and people forgot that, like many technologies, it is not
necessarily the best choice for everything. Customers have been quoted as saying that they want
only OO and don’t want to hear the word ‘function’ at all. Even after OO was a mature technology
for database oriented programs, developers found that it was not the most appropriate and mature
technology for algorithmic software such as radar signal processing.

Protocols. As different applications, particularly communications methods, are developed, some
of their basic operating rules are defined in protocols. These can take significant time to work out
to assure that they properly handle the content intended in the expected environment. As the
internet has evolved into a significant part of individual and organizational life, the maturity of the
internet protocols has been a significant factor in its success. New applications of use of the web
have brought about versions such as secure HTTP and any new use should go through the higher
TRL questions. However, the HTTP technology has to be considered as relatively mature.

Agents. A favorite example of software technology maturity is the use of agents. It would be
interesting to propose that the FAA rely on agent based software to negotiate among aircraft and
between aircraft and ground facilities for flight path and terminal operations coordination.

Genetic programming. In a similar vein, the artificial intelligence community has used the
concepts of genetic programming for some time in addressing complex problems for which the
best approach is not clear. In this method, the software self selects and modifies some of the
program content as it works towards finding the best fit. While this approach might be acceptable
in an application such as trying to find the best predictor of hurricane paths, it is probably not going
to be seen as mature enough to be part of a safety critical program.

Software support and testing. Support is general area of software related technologies that have
their own TRL issues. One such area is the field of automated testing and test case generation.
This technology has had several advances over the last decade and has proven valuable in many
situations. Yet it still has areas of application where work has not been completed to the point
where it can be considered mature for that application. On the other hand, there are many who
tried it in the earlier, less mature stages and will continue to consider it as immature regardless of
what has happened in this technology since then.

Summary
TRLs have significant relevance in defining and monitoring the technical risk of a program. This
is particularly true of large, complex systems that are pushing the technology state-of-the-art to
achieve significantly advanced performance. As these programs become more software-intensive,
they need appropriate guidance in the application of TRLs to software. While the current guidance
does give such guidance with regard to the development of specific products for the system,
additional guidance on how to view software from a technology standpoint will be of benefit. As
described in this paper, some of the things that should be considered are algorithms, languages,

architectures, design methods, protocols, specific design approaches such as agents or genetic
programming, and software support elements such as automated testing.

Each of these can be considered for their application, not just in the program in question, but in all
software development in general. As new ideas come into being, they should be evaluated against
the TRL criteria to establish their maturity before grabbing them as the next best thing for
immediate application. Even those that have been around for years with successful application in
other environments should be carefully stepped through the higher TRLs to identify the problem
areas of the new application. This broader interpretation of software TRLs may be a significant
help in avoiding the problems associated with immediately selecting the latest software silver
bullet idea for immediate application.

References
Smith, James D. II, An Alternative to Technology Readiness Levels for Non-Developmental Item

(NDI) Software, Carnegie Mellon Software Engineering Institute, 2005

NASA Research and Technology Program and Project Management Requirements, NASA
Procedural Requirements 7120.8, Appendix J. Technology Readiness Levels (TRLs),
February 05, 2008.

Department of Defense, Technology Readiness Assessment (TRA) Deskbook, Deputy Under
Secretary of Defense for Science and Technology (DUSD(S&T)), May 2005.

(Additional references will be added.)

BIOGRAPHY
Jim Armstrong has practiced systems engineering for over 40 years, performing various roles
including configuration management, test, deployment, chief engineer, program manager, and
program element monitor. For the last 20 years, he taught, consulted, and appraised systems
engineering in industry and government. Also, he was on the author teams for several of the
systems engineering standards and models

	Technical Readiness Levels in Programs
	Software Technologies
	Summary
	References
	BIOGRAPHY

	Prev:
	Next:
	Close:
	First:

