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Abstract. 
One of the few things certain about development of complex systems is the requirements for the 
system will remain uncertain late into the development program. Even though we recognize this, 
why do many programs assume that requirements will not change (gambling) or treat requirement 
change as a risk rather than a certainty? An analysis of gas turbine engine control systems 
requirements shows that typically 50% will change between Critical Design Review and Entry into 
Service. This requirements uncertainty manifests as technical risk to the programme. This paper 
evaluates the impact of not managing these uncertainties and describes how applying Systems 
Engineering principles can reduce this effect. 

Design iterations produce rework, and without technical risk management, ~50% of the effort will 
be wasted in producing unacceptable designs. In turn, correction of these errors will create more 
rework. This results in much iteration and cumulatively twice as much work is required to produce 
a mature design. With technical risk management, less than 10% of the design effort will result in 
rework, giving a mature product with far less iteration. 

Investigation into the source of the product development lifecycle problems indicates many 
escapes occur during requirements definition and review. Around twice as many changes are 
driven by errors in requirement definition by the developer, compared to customer-driven 
requirements changes. In addition, many of these escapes are detected later in the product 
development lifecycle than they could have been found, resulting in further escalation of the cost 
of product development. This paper compares and contrasts the root causes for these escapes 
during system, software and hardware development and looks at the differences in consequences. 

The role of the Systems Engineer is critical in addressing these problems. In addition to effective 
elicitation of requirements from stakeholders, the Systems Engineer must manage volatility and 
apply robust design principles to protect against the impact of requirements changes. The Systems 
Engineer must flow requirements effectively from system to sub-system, from sub-systems to 
components and provide the "glue" that results in the integrated system being more than the sum of 
its parts. 

Some tools and techniques are presented to help Systems Engineers identify probable sources of 
uncertainty and provide effective mitigations. An approach is also presented for assessing the 
technical risk management "maturity" of a project, based upon ‘best practice’ approaches taken 
from those projects achieving low levels of engineering scrap and rework during their 
development phase.  



  

Introduction 
Rolls-Royce 
Rolls-Royce provides power systems and services for use on land, at sea and in the air, and 
operates in four global markets - civil aerospace, defence aerospace, marine and energy. 
Predominantly, but by no means exclusively, the business is based around the gas turbine. The 
points made in this paper apply to the whole range of Rolls-Royce products. 

Products and business environment 
The power systems that Rolls-Royce produces are complex, and use many novel and cutting edge 
technologies.  Therefore product development is potentially high risk. The nature of the systems 
we produce means there is a strong probability of the emergence of unwanted properties or 
attributes, and the need for expensive rework to remedy the undesired system behaviour.   

In all the business sectors where Rolls-Royce operates there are demands for increased capability 
of the power systems, cheaper and faster product development, better transition to operation and 
better in-service cost and availability. For over 50% of our business Rolls-Royce has responsibility 
for cost of ownership and availability. 

All of the emerging pressures on product development mean that rework is even less acceptable 
than it was in the past, and the commercial consequences are greater.  Rolls-Royce is applying 
Systems Thinking to reduce rework.  

Effect of Rework 
It is important to realise that scrap rates apply to the rework as much as the original design, 

resulting in a cumulate scrap due to 
repeat rework on some items. Figure 
1 shows the relationship between 
scrap rate and cumulative scrap.  A 
50% scrap rates implies 100% 
overspend.  However 10% scrap rates 
implies only 11% cumulative 
overspend. There is a similar impact 
on the number of iterations to achieve 
a mature system, and hence the time 
to develop the system. This paper 
looks at the drivers of scrap and 
rework - and how these can be 
controlled to achieve acceptably low 
levels of scrap and rework. 

Why this is relevant to Rolls-Royce (and others) 
One of the "usual suspects" as a driver of scrap and rework is late change in customer 
requirements.  Customer requirement changes do have an impact, but analysis of the source of 
rework for engine control systems shows only 16% of change is driven by the customer, 17% 
comes from internally derived improvements and new requirements, the rest comes from internal 

Figure 1. The Cumulative Effect of Scrap
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errors in requirements and 
implementation, as shown in figure 2. 
There is a large opportunity to reduce 
development program costs and achieve 
maturity earlier, based on three elements:  

• Reduce the number of problems 
created in the first place - reduce the 
amount of scrap and rework "churn" in 
the program 

• Find problems and address them at the 
correct point in the system 
development lifecycle.  

Gain a better understanding of Customer 
requirements and improvement opportunities to reduce the level of change after program 
launch, for instance by using techniques like Continuous Early Validation (CEaVa) (1, 2) 

Figure 3 shows a typical distribution of where problems were found, and where problems should 
have been found, during development of software for an engine control system. In this case, nearly 
70% of the problems were detected at the correct point in the lifecycle, but the 30% that escaped 
more than doubled the cost of correcting the problems, using a standard lifecycle cost model for 
software (3). 

Figure 4 shows similar information for various hardware problem reports covering a range of 
components in gas turbine engines. In this case, around 60% of the problems are found at the 
correct point in the development lifecycle. However, the pictures are similar in that most problems 
are being found during requirements or design review, and most escapes are also in this area.  
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Figure 2. Most Uncertainty is Self-Generated 

M
at

la
b 

A
ni

m
at

in
g

R
ev

ie
w

in
g

A
pp

lic
at

io
n 

S/
W

 
B

ui
ld

in
g

Lo
w

 L
ev

el
 T

es
tin

g

S/
W

 V
er

ifi
ca

tio
n 

Te
st

in
g

H
SI

 T
es

tin
g

Sy
st

em
 V

er
ifi

ca
tio

n 
Te

st
in

g
H

ar
dw

ar
e 

R
ig

 
Te

st
in

g

En
gi

ne
 T

es
tin

g

A
irf

ra
m

e 
Te

st
in

g

Fl
ig

ht
 T

es
tin

g

In
 S

er
vi

ce

K
ey

:

C
os

t W
ei

gh
t

C
os

t i
f f

ou
nd

at
 ri

gh
t s

ta
ge

A
ct

ua
l c

os
t

Matlab Animating 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% >= 8% 1 0.032 0.005

Reviewing 1.3% 55% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4% to 8% 1 0.798 0.566

Application S/W Building 0.0% 0.7% 1.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2% to 4% 1 0.014 0.021

Low Level Testing 0.2% 2.6% 0.0% 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1% to 2% 1 0.012 0.035

S/W Verification Testing 0.0% 0.8% 0.0% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% < 1% 5 0.031 0.060

H/W - S/W Integration Testing 0.0% 1.0% 0.0% 0.0% 0.0% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5 0.080 0.077

System Verification Testing 0.9% 9.9% 0.0% 0.4% 0.2% 0.8% 5.0% 0.0% 0.0% 0.0% 0.0% 0.0% 25 1.592 4.301

Hardware Rig Testing 0.0% 1.3% 0.0% 0.0% 0.0% 0.0% 0.1% 0.4% 0.0% 0.0% 0.0% 0.0% 50 0.376 0.907

Engine Testing 0.1% 1.6% 0.0% 0.0% 0.0% 0.2% 0.4% 0.2% 1.6% 0.0% 0.0% 0.0% 50 0.885 2.057

Airframe Testing 0.0% 3.8% 0.0% 0.0% 0.0% 0.1% 0.6% 0.0% 0.0% 1.2% 0.0% 0.0% 50 0.796 2.875

Flight Testing 0.0% 2.3% 0.0% 0.0% 0.0% 0.0% 0.3% 0.1% 0.1% 0.4% 1.5% 0.0% 50 0.774 2.433

In Service 0.0% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 200 0.177 1.415

Total Escapes 2.7% 25% 0.0% 0.4% 0.2% 1.1% 1.4% 0.4% 0.1% 0.4% 0.0% 31.2% Total:  5.567 14.752
Total 3.2% 80% 1.4% 1.2% 0.6% 1.6% 6.4% 0.8% 1.8% 1.6% 1.5% 0.1% 100.0% 265%Cost Ratio:  

Figure 3. Where Found/Where Should Have  Been Found, Software Problems

Should have 
been found 
during: -->

Found during:

Software Problem Report 
Analysis



  

Certainty, Risk and Gambling 
Uncertainty is certain. 2 years research into how to manage uncertainty has shown that the 
majority of uncertainty is relatively easy to identify, define, quantify, document and manage.  The 
results can be spectacular with savings of 100:1 return on investment!   

Unwarranted certainty 
The typical “can do” culture has a negative attitude towards uncertainty – it is better to be certain 
and wrong then uncertain and right!  However, the evidence is that uncertainty is very normal. 

If not managed, uncertainty will manifest later in a Project's life as late change and rework.  The 
problem begins with the wrong attitude towards uncertainty.  One approach is to change the 
emphasis at gate reviews, so that a project must show where it is certain, where it is still uncertain 
and a plan for how to address the residual uncertainty. 

Gambling 
Many projects claim they do good risk management but there is little evidence of much activity 
beyond project (cost and schedule) risk identification. Investigation of one project showed 50% of 
people claimed they identified Technical Risks but only around 10% actually did anything with the 
results! 
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1 - Requirements Validation Activity 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% >= 8%
2 - Requirements Review 0.0% 33.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4% to 8%
3 - Design Review 0.0% 1.1% 2.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2% to 4%
4 - Manufacture 0.4% 0.0% 0.7% 0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1% to 2%
5 - Component Test 0.0% 1.1% 1.5% 0.0% 3.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% < 1%

6 - Module Assembly 0.0% 0.0% 1.5% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

7 - Module Test 0.0% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

8 - Development Engine Assembly 0.0% 0.0% 1.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

9 - Engine Development Test 0.0% 3.3% 9.1% 0.4% 1.5% 0.0% 0.0% 0.0% 13.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

10 - First Article Inspection 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

11 - Engine Certification Test 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

12 - Production Engine Assembly 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

13 - Production Engine Test 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

14 - Flight Test 0.0% 0.0% 0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4% 0.0% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0%

15 - In Service 0.4% 0.0% 6.9% 2.2% 1.1% 0.0% 0.0% 0.0% 3.3% 0.0% 0.7% 0.4% 0.0% 0.4% 1.5% 0.0%

16 - Other 0.0% 0.0% 0.4% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3.6%

Total Escapes 0.7% 5% 23% 2.9% 2.9% 0.0% 0.0% 0.0% 4% 0.0% 0.7% 0.7% 0.0% 0.4% 0.0% 40.9%

Total All 0.7% 39% 25% 3.6% 6.2% 0.0% 0.0% 0.0% 18% 0.0% 0.7% 0.7% 0.0% 0.4% 1.5% 3.6% 100.0%

Figure 4. Where Found/Where Should Have  Been Found, Hardware Problems

Should Have Been Found During:

Found During:

Gas Turbine Hardware 
Problem Report Analysis



 

  

Taking on risk and doing nothing about it is no better than gambling. 

Risk management – the middle path 
A review of project risk logs is shown in 
figure 5. 

“Technical Specific” issues relate to a risk 
applicable to a single function or component. 
These are very targeted and well defined 
risks.   

 “Technical Sweeping" issues are broad 
brush, technical issues. These issues tend to 
be closed as “acceptable risk” and appear on 
every project risk log.  .  Many of these are 
not risks – they are certainties. 

“Other" issues are non technical risks 
affecting cost and schedule. These risks tend to be populated by the project managers rather than 
the technical specialists.  

Risk Management tends to be a project management tool, referred to more in the project 
management processes and guidelines than the engineering processes.  

What is Technical Risk Management? 
Technical Risk Management is the method by which product (technical) uncertainty can be 
defined and mitigated.  Best practice from across Rolls-Royce and Industry, shows that Technical 
Risk Management is an effective tool to define, manage and mitigate uncertainty.  Mawby and 
Stupples (4) state: 

Track record shows that the 
vast majority of complex 
projects are going to overrun 
their cost and schedule 
targets, often by large 
margins. These overruns are 
usually caused by rework 
that has been generated 
within the project by its 
inability to manage the 
inherent uncertainty 

Technical Risk Management 
compliments standard Risk 
Management by focusing on 
the product and any 
uncertainties in its purpose, 
requirements, definition, 
development and 
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Managing by Optimism (green 
light Management).  Project fails 

to identify technical risk at the 
start and experiences late change

Objective Management.  Project 
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manages it and consequently 
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and reality
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Rework

Figure 6 Perception and Reality 

Figure 5 Risk Categories
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deployment. 

There are similarities and differences between traditional Project Risk Management and Technical 
Risk Management.  The common issues are planning, process, level of rigor, allocation of 
resource, and risk criteria.  

Planning only on the basis of success and not accommodating risks is likely to lead to failure (5).  
Such plans are often referred to as “Green Light Plans”.   

Figure 6 shows the difference between actual uncertainty (Blue Line) and the level of uncertainty 
that is often perceived (Green Line) which is unrealistic optimism.  A project run on a Green Line 
tends to report few risks but the risks start to emerge at gate reviews and later on as scrap & 
rework. 

Late change is a function of the gap between perceived and actual certainty - DeMarco and Lister 
(6) state  

“Risk management is Project Management for adults - considering only the rosy scenario and 
building it into the project plan is real kid stuff."  
A “Blue Line” project will identify the risks early but few new risks will be identified during gate 
reviews and there will be lower scrap & rework.   

An example of Technical Risk Management at work 
Uncertainty can be managed – but it needs to be 
recognized.  There is the well established known 
and unknown 4 quadrant matrix.  Table 1 
contains the root cause distributions from the 
analyzed projects.   

Technical Risk Management is the process of 
moving risks from where they are hard to 
mitigate (unknown-knowns and 
unknown-unknowns) to the quadrants where 
they are easiest to mitigate (known-unknowns) 
or manage (known-knowns).   

Systems Engineering Approach 

What is Systems Engineering?  
There are many different definitions of Systems Engineering, all of which provide different 
insights into the nature of the approach. Systems Engineering is needed in order to control 
undesirable effects (late emergence leading to costly rework) and manage complexity. It handles 
complexity by viewing the situation as a system and applying systems thinking in a structured 
way. It does go against the natural tendency to focus immediately on the complexities of the 
detailed technical solution.  There is a need for concurrency and the use of judgment to take 
rational risks and make progress – but plans need to be made to reduce uncertainty in the 
understanding of the problem, or to reduce the consequences of this uncertainty – hence the need 
for technical risk management as part of the Systems Engineering toolkit. 

Knowns Unknowns
Known-Knowns (28% 
of uncertainty arises 

here)

Known- Unknowns 
(29% of uncertainty 

arises here)
We failed on 

implementation 
We know we have 

risk
Unknown Knowns 

(30% of uncertainty 
arises here)

Unknown Unknowns 
(13% of uncertainty 

arises here)
We knew but forgot Surprises

Unknown

Known

Table 1. Knowns and Unknowns 



 

  

Requirements are often unknown and vague at the start.  Bone (7) proposes a model which can 
monitor and remove vagueness in requirements.  The "Solutions" section of this paper describes 
some explicit techniques to handle and mature requirements.  Even if the vagueness could be 
removed before flowing down the system solution to next stage and level of detail (and expense) it 
is vital to recognize that requirements will change.  This is an aspect of a “wicked problem” as 
described by Conklin (8).  Hence the issue of requirements changing or emerging has to be 
recognized and managed as a technical risk. 

Program Management/Systems Engineering Interaction 
Systems Engineering and Program Management should be thoroughly intertwined, and should be 
considered as two sides of the same coin.  Program Management can become too driven by 
demonstrable progress, focusing too much on schedule and cost.  Often, the need for and the role 
of the Program Manager is clearly understood, and that of the role of Systems Engineer is not. 

The program plan must address all stakeholder needs and verification activities, and must mitigate 
risks.  Risk consequences should be stated in terms of the requirements that will not be met. 

In practice, this means moving forward with some level of risk and uncertainty.  Therefore the plan 
must recognize the need to maintain / update the requirements (and add the lower levels of 
sub-system / component detail as they emerge), and to develop the missing parts of the 
requirements.   

The fundamental message is that program plans and risk plans must be derived from a clear 
understanding of the requirements both technical and programmatic.  Where technical risk or 
requirement uncertainty can have an unacceptable impact on the program outcome, then the plan 
must include activity to better understand the requirement or mitigate the risks.   

Solutions 

Technical Risk Maturity Assessment 
Technical risk 
management is an essential 
tool for controlling 
uncertainty, scrap and 
rework. To accept this, an 
organization may have to 
go through a "cultural 
change", to reach a point 
where declaration and 
mitigation of technical risk 
is encouraged and 
supported. 

One approach is to produce 
a "Technical Risk Maturity 
Assessment" to allow 
Projects to self-assess their 
capability at the start of the 

Level 0
kids stuff

Do nothing. The 
project is open loop 

with regard to 
technical risks.  

Without evidence the 
project must assume 
it will be at level 0.

Level 1
Minimum

Do something even if 
it’s not planned, 
documented or 

formalised.  Relies on 
good managers to 

make it happen

Level 2
Pragmatic

Define, plan and 
govern the Technical 

Risk Management 
activities – it’s not 

enough to do 
Technical Risk 

Management, we 
need to also do it in 

the right way.

Level 3
Ideal

Seeking high 
performance through 

the use of 
measurement, 

specialists 
involvement, 
stakeholder 
involvement

9 7 9
Number of requirements

25 requirements based on CMMI, 
the Major Project Association and 

RR Risk Maturity model

Figure 7. Technical Risk Maturity Assessment 



  

project. 

Risk Checklists 

If the team has access to lists of typical risks and mitigations, organized hierarchically into classes, 
a more comprehensive identification of risks is achieved. The top level classes that we have 
identified are relatively domain-independent, and are shown in figure 8.  

 

 

The next level of the hierarchy is populated by reviewing the actions from technical gate reviews 
of previous system development programs. These risks are associated with each of the risk classes 
to make the first two levels of the hierarchy.  

The final level in the hierarchy is populated by examining Lessons Learned and re-formatting each 
of these into a risk (i.e. the underlying problem) and an associated mitigation (the lesson). Figure 9 
shows how these "mistakes" of previous projects can be fed back to help future projects manage 
risks. 

 Common Risk 
(& opportunity) Classes

 Concept
 Airframe Maturity
 Engine Maturity
 Concept Maturity
 Technology 

Readiness
 Novelty & Complexity

 Novelty
 Complexity
 Number of 

Interfaces
 Novel process/ 

tools
 New unknown 

supplier
 New document 

structure
 Requirements

 Requirements 
quality

 Requirements 
volatility

 Historically volatile 
requirements

 Robustness to change
 Product 

robustness
 Product 

configurability
 Reuse 

Assumptions
 Product 

Environment

 Capability
 Customer 

Capability
 Team Capability
 Supplier Capability

 Stakeholder 
Engagement

 Customer Buy Off
 Supplier Buy off

 Industry & Business 
Trends

 Certification 
changes

 Industry changes
 Business changes

 Project
 Location of team & 

Stakeholders
 Schedule stability
 Scope stability
 Budget to support 

risk management
 Resource at the 

right time

Risk 
Identi-
fication

 Architecture Trade Study
 IPT - Controls
 IPT -- Controls & 

Stakeholders
 Concept proposal 

review
 Review

 Friendly review
 Independent review
 Review by Domain 

Expert
 Early proof of concept

 Prototype - stand 
alone

 Prototype in existing 
control system

 Modelling - Control 
System

 Modelling - Control 
System + Engine

 Modelling - Control 
System + Airframe

 Find & Fix
 Airframe Test Rig or 

Aircraft
 Engine Test Rig 

Exposure
 Integration Test 

Exposure

Risk 
Mitigation

 DFX - Design for 
volatility

 Robust Design
 Configurable design
 Plug & Play 

architecture
 Auto code 

generation
 Design Guidance

 Design Guide
 Lessons Learnt
 Learn from historic 

projects
 RIPL

 Stakeholder engagement
 On site stakeholder 

representation
 Visibility of 

stakeholder risks
 Joint risk 

management 
sessions

 Stakeholder 
reviews

 Plan for volatility
 Delay the Function
 Plan for design 

iteration
 Delay freeze of 

design/ 
requirements

 If all else fails, plan 
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The process recommended to Projects is to perform a risk brainstorm first, and then use the risk 
tool to "fill in" for any risks that were missed. This has the advantage that if the scope of the new 
project is broader than previous experience some thought is given to the specific risks associated 
with new functionality, and the risk tool is not applied "blindly". 

Metrics 

Three measures are proposed to Projects to assess how well they are performing technical risk 
assessment: 

• At the start of the Project, perform a Technical Risk Maturity Assessment and achieve an 
adequate level. 

• Review the actions from the Technical Review Gates and count how many technical specific 
risks that were identified are not in the risk log. 

• At the completion of the Project measure the scrap/rework rate  

Does it Work? 
Figure 10 shows a comparison of several incremental software build projects. All of the builds are 
of similar size, and were performed at a similar point in the project lifecycle, by the same software 
development team. 

Figure 9. Risk Identification Sources 
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Two of the builds did not incorporate Technical Risk Management and risk mitigation practices, 
and show results typical of other software builds of this type - for the number of changes 

incorporated in the build, around 30% to 70% additional changes were generated as a result of 
inadequacies in the implementation of these changes. Three of the builds made full use of 
Technical Risk Management and risk mitigation, and showed around 2% additional changes 
generated. The cost to perform the risk mitigation for each build was relatively small, sufficient to 
give benefit to cost ratios of greater than 100 to 1 - an investment that is hard to challenge! 

Summary 
• If no effort is made to control scrap and rework on a project, scrap rates of 50% can typically 

occur, leading to the program costing twice as much as it could have and requiring 
significantly more time to achieve a mature product. 

• Contrary to expectations, changes in customer requirements are not a major driver of scrap and 
rework - most is internally generated by the development team. 

• Most problems are detected during requirements or design review, but most escapes also occur 
in the review process. There appears to be no difference between software and hardware 
problems in this respect. 

• Late detection of problems more than doubles the cost of correction.  

• Systems Engineering and Technical Risk Management are critical in understanding and 
controlling the sources of scrap and rework 
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• Past experience (Lessons Learned, Technical Review Gate Actions) can provide a useful 
feedback mechanism to understand the technical risks that a new project may be facing 

• Metrics are available to assess Technical Risk Management capability and effectiveness on a 
project 

• Scrap and rework rates of less than 10% can be achieved, with benefit to cost ratios of better 
than 100:1 
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