

Certainty, Risk and Gambling in the Development of
Complex Systems

Andrew C Pickard, Andrew J Nolan and Richard Beasley
Rolls-Royce plc

Andrew.C.Pickard@rolls-royce.com

Copyright © 2010 by Rolls-Royce. Published and used by INCOSE with permission.

Abstract.
One of the few things certain about development of complex systems is the requirements for the
system will remain uncertain late into the development program. Even though we recognize this,
why do many programs assume that requirements will not change (gambling) or treat requirement
change as a risk rather than a certainty? An analysis of gas turbine engine control systems
requirements shows that typically 50% will change between Critical Design Review and Entry into
Service. This requirements uncertainty manifests as technical risk to the programme. This paper
evaluates the impact of not managing these uncertainties and describes how applying Systems
Engineering principles can reduce this effect.

Design iterations produce rework, and without technical risk management, ~50% of the effort will
be wasted in producing unacceptable designs. In turn, correction of these errors will create more
rework. This results in much iteration and cumulatively twice as much work is required to produce
a mature design. With technical risk management, less than 10% of the design effort will result in
rework, giving a mature product with far less iteration.

Investigation into the source of the product development lifecycle problems indicates many
escapes occur during requirements definition and review. Around twice as many changes are
driven by errors in requirement definition by the developer, compared to customer-driven
requirements changes. In addition, many of these escapes are detected later in the product
development lifecycle than they could have been found, resulting in further escalation of the cost
of product development. This paper compares and contrasts the root causes for these escapes
during system, software and hardware development and looks at the differences in consequences.

The role of the Systems Engineer is critical in addressing these problems. In addition to effective
elicitation of requirements from stakeholders, the Systems Engineer must manage volatility and
apply robust design principles to protect against the impact of requirements changes. The Systems
Engineer must flow requirements effectively from system to sub-system, from sub-systems to
components and provide the "glue" that results in the integrated system being more than the sum of
its parts.

Some tools and techniques are presented to help Systems Engineers identify probable sources of
uncertainty and provide effective mitigations. An approach is also presented for assessing the
technical risk management "maturity" of a project, based upon ‘best practice’ approaches taken
from those projects achieving low levels of engineering scrap and rework during their
development phase.

Introduction
Rolls-Royce
Rolls-Royce provides power systems and services for use on land, at sea and in the air, and
operates in four global markets - civil aerospace, defence aerospace, marine and energy.
Predominantly, but by no means exclusively, the business is based around the gas turbine. The
points made in this paper apply to the whole range of Rolls-Royce products.

Products and business environment
The power systems that Rolls-Royce produces are complex, and use many novel and cutting edge
technologies. Therefore product development is potentially high risk. The nature of the systems
we produce means there is a strong probability of the emergence of unwanted properties or
attributes, and the need for expensive rework to remedy the undesired system behaviour.

In all the business sectors where Rolls-Royce operates there are demands for increased capability
of the power systems, cheaper and faster product development, better transition to operation and
better in-service cost and availability. For over 50% of our business Rolls-Royce has responsibility
for cost of ownership and availability.

All of the emerging pressures on product development mean that rework is even less acceptable
than it was in the past, and the commercial consequences are greater. Rolls-Royce is applying
Systems Thinking to reduce rework.

Effect of Rework
It is important to realise that scrap rates apply to the rework as much as the original design,

resulting in a cumulate scrap due to
repeat rework on some items. Figure
1 shows the relationship between
scrap rate and cumulative scrap. A
50% scrap rates implies 100%
overspend. However 10% scrap rates
implies only 11% cumulative
overspend. There is a similar impact
on the number of iterations to achieve
a mature system, and hence the time
to develop the system. This paper
looks at the drivers of scrap and
rework - and how these can be
controlled to achieve acceptably low
levels of scrap and rework.

Why this is relevant to Rolls-Royce (and others)
One of the "usual suspects" as a driver of scrap and rework is late change in customer
requirements. Customer requirement changes do have an impact, but analysis of the source of
rework for engine control systems shows only 16% of change is driven by the customer, 17%
comes from internally derived improvements and new requirements, the rest comes from internal

Figure 1. The Cumulative Effect of Scrap

0%
100%
200%
300%
400%
500%
600%
700%
800%
900%

1000%

0% 20% 40% 60% 80% 100%
Scrap Rate

C
um

ul
at

iv
e

Sc
ra

p

50% Scrap Rate =
100% Cumulative Scrap

10% Scrap Rate =
11% Cumulative Scrap

errors in requirements and
implementation, as shown in figure 2.
There is a large opportunity to reduce
development program costs and achieve
maturity earlier, based on three elements:

• Reduce the number of problems
created in the first place - reduce the
amount of scrap and rework "churn" in
the program

• Find problems and address them at the
correct point in the system
development lifecycle.

Gain a better understanding of Customer
requirements and improvement opportunities to reduce the level of change after program
launch, for instance by using techniques like Continuous Early Validation (CEaVa) (1, 2)

Figure 3 shows a typical distribution of where problems were found, and where problems should
have been found, during development of software for an engine control system. In this case, nearly
70% of the problems were detected at the correct point in the lifecycle, but the 30% that escaped
more than doubled the cost of correcting the problems, using a standard lifecycle cost model for
software (3).

Figure 4 shows similar information for various hardware problem reports covering a range of
components in gas turbine engines. In this case, around 60% of the problems are found at the
correct point in the development lifecycle. However, the pictures are similar in that most problems
are being found during requirements or design review, and most escapes are also in this area.

Source of
Change

Post
Critical
Design
Review

Self
Generated

Change
- New

Requirement

Customer
Generated
 Change

Self-
Generated

Change
- Software

Design/
Coding Error

Self
Generated

Change
-

Requirement
Error

Figure 2. Most Uncertainty is Self-Generated

M
at

la
b

A
ni

m
at

in
g

R
ev

ie
w

in
g

A
pp

lic
at

io
n

S/
W

B

ui
ld

in
g

Lo
w

 L
ev

el
 T

es
tin

g

S/
W

 V
er

ifi
ca

tio
n

Te
st

in
g

H
SI

 T
es

tin
g

Sy
st

em
 V

er
ifi

ca
tio

n
Te

st
in

g
H

ar
dw

ar
e

R
ig

Te

st
in

g

En
gi

ne
 T

es
tin

g

A
irf

ra
m

e
Te

st
in

g

Fl
ig

ht
 T

es
tin

g

In
 S

er
vi

ce

K
ey

:

C
os

t W
ei

gh
t

C
os

t i
f f

ou
nd

at
 ri

gh
t s

ta
ge

A
ct

ua
l c

os
t

Matlab Animating 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% >= 8% 1 0.032 0.005

Reviewing 1.3% 55% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4% to 8% 1 0.798 0.566

Application S/W Building 0.0% 0.7% 1.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2% to 4% 1 0.014 0.021

Low Level Testing 0.2% 2.6% 0.0% 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1% to 2% 1 0.012 0.035

S/W Verification Testing 0.0% 0.8% 0.0% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% < 1% 5 0.031 0.060

H/W - S/W Integration Testing 0.0% 1.0% 0.0% 0.0% 0.0% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5 0.080 0.077

System Verification Testing 0.9% 9.9% 0.0% 0.4% 0.2% 0.8% 5.0% 0.0% 0.0% 0.0% 0.0% 0.0% 25 1.592 4.301

Hardware Rig Testing 0.0% 1.3% 0.0% 0.0% 0.0% 0.0% 0.1% 0.4% 0.0% 0.0% 0.0% 0.0% 50 0.376 0.907

Engine Testing 0.1% 1.6% 0.0% 0.0% 0.0% 0.2% 0.4% 0.2% 1.6% 0.0% 0.0% 0.0% 50 0.885 2.057

Airframe Testing 0.0% 3.8% 0.0% 0.0% 0.0% 0.1% 0.6% 0.0% 0.0% 1.2% 0.0% 0.0% 50 0.796 2.875

Flight Testing 0.0% 2.3% 0.0% 0.0% 0.0% 0.0% 0.3% 0.1% 0.1% 0.4% 1.5% 0.0% 50 0.774 2.433

In Service 0.0% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 200 0.177 1.415

Total Escapes 2.7% 25% 0.0% 0.4% 0.2% 1.1% 1.4% 0.4% 0.1% 0.4% 0.0% 31.2% Total: 5.567 14.752
Total 3.2% 80% 1.4% 1.2% 0.6% 1.6% 6.4% 0.8% 1.8% 1.6% 1.5% 0.1% 100.0% 265%Cost Ratio:

Figure 3. Where Found/Where Should Have Been Found, Software Problems

Should have
been found
during: -->

Found during:

Software Problem Report
Analysis

Certainty, Risk and Gambling
Uncertainty is certain. 2 years research into how to manage uncertainty has shown that the
majority of uncertainty is relatively easy to identify, define, quantify, document and manage. The
results can be spectacular with savings of 100:1 return on investment!

Unwarranted certainty
The typical “can do” culture has a negative attitude towards uncertainty – it is better to be certain
and wrong then uncertain and right! However, the evidence is that uncertainty is very normal.

If not managed, uncertainty will manifest later in a Project's life as late change and rework. The
problem begins with the wrong attitude towards uncertainty. One approach is to change the
emphasis at gate reviews, so that a project must show where it is certain, where it is still uncertain
and a plan for how to address the residual uncertainty.

Gambling
Many projects claim they do good risk management but there is little evidence of much activity
beyond project (cost and schedule) risk identification. Investigation of one project showed 50% of
people claimed they identified Technical Risks but only around 10% actually did anything with the
results!

1
- R

eq
ui

re
m

en
ts

Va

lid
at

io
n

Ac
tiv

ity
2

- R
eq

ui
re

m
en

ts

R
ev

ie
w

3
- D

es
ig

n
R

ev
ie

w

4
- M

an
uf

ac
tu

re

5
- C

om
po

ne
nt

 T
es

t

6
- M

od
ul

e
As

se
m

bl
y

7
- M

od
ul

e
Te

st

8
- D

ev
el

op
m

en
t

En
gi

ne
 A

ss
em

bl
y

9
- E

ng
in

e
D

ev
el

op
m

en
t T

es
t

10
 -

Fi
rs

t A
rti

cl
e

In
sp

ec
tio

n
11

 -
En

gi
ne

C

er
tif

ic
at

io
n

Te
st

12
 -

Pr
od

uc
tio

n
En

gi
ne

 A
ss

em
bl

y
13

 -
Pr

od
uc

tio
n

En
gi

ne
 T

es
t

14
 -

Fl
ig

ht
 T

es
t

15
 -

In
 S

er
vi

ce

16
 -

O
th

er

Ke
y:

1 - Requirements Validation Activity 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% >= 8%
2 - Requirements Review 0.0% 33.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4% to 8%
3 - Design Review 0.0% 1.1% 2.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2% to 4%
4 - Manufacture 0.4% 0.0% 0.7% 0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1% to 2%
5 - Component Test 0.0% 1.1% 1.5% 0.0% 3.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% < 1%

6 - Module Assembly 0.0% 0.0% 1.5% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

7 - Module Test 0.0% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

8 - Development Engine Assembly 0.0% 0.0% 1.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

9 - Engine Development Test 0.0% 3.3% 9.1% 0.4% 1.5% 0.0% 0.0% 0.0% 13.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

10 - First Article Inspection 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

11 - Engine Certification Test 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

12 - Production Engine Assembly 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

13 - Production Engine Test 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

14 - Flight Test 0.0% 0.0% 0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4% 0.0% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0%

15 - In Service 0.4% 0.0% 6.9% 2.2% 1.1% 0.0% 0.0% 0.0% 3.3% 0.0% 0.7% 0.4% 0.0% 0.4% 1.5% 0.0%

16 - Other 0.0% 0.0% 0.4% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3.6%

Total Escapes 0.7% 5% 23% 2.9% 2.9% 0.0% 0.0% 0.0% 4% 0.0% 0.7% 0.7% 0.0% 0.4% 0.0% 40.9%

Total All 0.7% 39% 25% 3.6% 6.2% 0.0% 0.0% 0.0% 18% 0.0% 0.7% 0.7% 0.0% 0.4% 1.5% 3.6% 100.0%

Figure 4. Where Found/Where Should Have Been Found, Hardware Problems

Should Have Been Found During:

Found During:

Gas Turbine Hardware
Problem Report Analysis

Taking on risk and doing nothing about it is no better than gambling.

Risk management – the middle path
A review of project risk logs is shown in
figure 5.

“Technical Specific” issues relate to a risk
applicable to a single function or component.
These are very targeted and well defined
risks.

 “Technical Sweeping" issues are broad
brush, technical issues. These issues tend to
be closed as “acceptable risk” and appear on
every project risk log. . Many of these are
not risks – they are certainties.

“Other" issues are non technical risks
affecting cost and schedule. These risks tend to be populated by the project managers rather than
the technical specialists.

Risk Management tends to be a project management tool, referred to more in the project
management processes and guidelines than the engineering processes.

What is Technical Risk Management?
Technical Risk Management is the method by which product (technical) uncertainty can be
defined and mitigated. Best practice from across Rolls-Royce and Industry, shows that Technical
Risk Management is an effective tool to define, manage and mitigate uncertainty. Mawby and
Stupples (4) state:

Track record shows that the
vast majority of complex
projects are going to overrun
their cost and schedule
targets, often by large
margins. These overruns are
usually caused by rework
that has been generated
within the project by its
inability to manage the
inherent uncertainty

Technical Risk Management
compliments standard Risk
Management by focusing on
the product and any
uncertainties in its purpose,
requirements, definition,
development and

3%

3%

59%

5%

46%

Time

C
er

ta
in

ty

Risk Log

CDR Actions

Scrap &
Rework

45%

Technical
Risk/Change

Risk Log

CDR Actions

Managing by Optimism (green
light Management). Project fails

to identify technical risk at the
start and experiences late change

Objective Management. Project
identifies its uncertainty (risk) early,

manages it and consequently
minimises late change.

Chaos is in proportion to the gap
between unjustified optimism

and reality

Scrap &
Rework

Figure 6 Perception and Reality

Figure 5 Risk Categories

Other
79%

Technical
Sweeping

17%

Technical
Specific

4%

deployment.

There are similarities and differences between traditional Project Risk Management and Technical
Risk Management. The common issues are planning, process, level of rigor, allocation of
resource, and risk criteria.

Planning only on the basis of success and not accommodating risks is likely to lead to failure (5).
Such plans are often referred to as “Green Light Plans”.

Figure 6 shows the difference between actual uncertainty (Blue Line) and the level of uncertainty
that is often perceived (Green Line) which is unrealistic optimism. A project run on a Green Line
tends to report few risks but the risks start to emerge at gate reviews and later on as scrap &
rework.

Late change is a function of the gap between perceived and actual certainty - DeMarco and Lister
(6) state

“Risk management is Project Management for adults - considering only the rosy scenario and
building it into the project plan is real kid stuff."
A “Blue Line” project will identify the risks early but few new risks will be identified during gate
reviews and there will be lower scrap & rework.

An example of Technical Risk Management at work
Uncertainty can be managed – but it needs to be
recognized. There is the well established known
and unknown 4 quadrant matrix. Table 1
contains the root cause distributions from the
analyzed projects.

Technical Risk Management is the process of
moving risks from where they are hard to
mitigate (unknown-knowns and
unknown-unknowns) to the quadrants where
they are easiest to mitigate (known-unknowns)
or manage (known-knowns).

Systems Engineering Approach

What is Systems Engineering?
There are many different definitions of Systems Engineering, all of which provide different
insights into the nature of the approach. Systems Engineering is needed in order to control
undesirable effects (late emergence leading to costly rework) and manage complexity. It handles
complexity by viewing the situation as a system and applying systems thinking in a structured
way. It does go against the natural tendency to focus immediately on the complexities of the
detailed technical solution. There is a need for concurrency and the use of judgment to take
rational risks and make progress – but plans need to be made to reduce uncertainty in the
understanding of the problem, or to reduce the consequences of this uncertainty – hence the need
for technical risk management as part of the Systems Engineering toolkit.

Knowns Unknowns
Known-Knowns (28%
of uncertainty arises

here)

Known- Unknowns
(29% of uncertainty

arises here)
We failed on

implementation
We know we have

risk
Unknown Knowns

(30% of uncertainty
arises here)

Unknown Unknowns
(13% of uncertainty

arises here)
We knew but forgot Surprises

Unknown

Known

Table 1. Knowns and Unknowns

Requirements are often unknown and vague at the start. Bone (7) proposes a model which can
monitor and remove vagueness in requirements. The "Solutions" section of this paper describes
some explicit techniques to handle and mature requirements. Even if the vagueness could be
removed before flowing down the system solution to next stage and level of detail (and expense) it
is vital to recognize that requirements will change. This is an aspect of a “wicked problem” as
described by Conklin (8). Hence the issue of requirements changing or emerging has to be
recognized and managed as a technical risk.

Program Management/Systems Engineering Interaction
Systems Engineering and Program Management should be thoroughly intertwined, and should be
considered as two sides of the same coin. Program Management can become too driven by
demonstrable progress, focusing too much on schedule and cost. Often, the need for and the role
of the Program Manager is clearly understood, and that of the role of Systems Engineer is not.

The program plan must address all stakeholder needs and verification activities, and must mitigate
risks. Risk consequences should be stated in terms of the requirements that will not be met.

In practice, this means moving forward with some level of risk and uncertainty. Therefore the plan
must recognize the need to maintain / update the requirements (and add the lower levels of
sub-system / component detail as they emerge), and to develop the missing parts of the
requirements.

The fundamental message is that program plans and risk plans must be derived from a clear
understanding of the requirements both technical and programmatic. Where technical risk or
requirement uncertainty can have an unacceptable impact on the program outcome, then the plan
must include activity to better understand the requirement or mitigate the risks.

Solutions

Technical Risk Maturity Assessment
Technical risk
management is an essential
tool for controlling
uncertainty, scrap and
rework. To accept this, an
organization may have to
go through a "cultural
change", to reach a point
where declaration and
mitigation of technical risk
is encouraged and
supported.

One approach is to produce
a "Technical Risk Maturity
Assessment" to allow
Projects to self-assess their
capability at the start of the

Level 0
kids stuff

Do nothing. The
project is open loop

with regard to
technical risks.

Without evidence the
project must assume
it will be at level 0.

Level 1
Minimum

Do something even if
it’s not planned,
documented or

formalised. Relies on
good managers to

make it happen

Level 2
Pragmatic

Define, plan and
govern the Technical

Risk Management
activities – it’s not

enough to do
Technical Risk

Management, we
need to also do it in

the right way.

Level 3
Ideal

Seeking high
performance through

the use of
measurement,

specialists
involvement,
stakeholder
involvement

9 7 9
Number of requirements

25 requirements based on CMMI,
the Major Project Association and

RR Risk Maturity model

Figure 7. Technical Risk Maturity Assessment

project.

Risk Checklists

If the team has access to lists of typical risks and mitigations, organized hierarchically into classes,
a more comprehensive identification of risks is achieved. The top level classes that we have
identified are relatively domain-independent, and are shown in figure 8.

The next level of the hierarchy is populated by reviewing the actions from technical gate reviews
of previous system development programs. These risks are associated with each of the risk classes
to make the first two levels of the hierarchy.

The final level in the hierarchy is populated by examining Lessons Learned and re-formatting each
of these into a risk (i.e. the underlying problem) and an associated mitigation (the lesson). Figure 9
shows how these "mistakes" of previous projects can be fed back to help future projects manage
risks.

 Common Risk
(& opportunity) Classes

 Concept
 Airframe Maturity
 Engine Maturity
 Concept Maturity
 Technology

Readiness
 Novelty & Complexity

 Novelty
 Complexity
 Number of

Interfaces
 Novel process/

tools
 New unknown

supplier
 New document

structure
 Requirements

 Requirements
quality

 Requirements
volatility

 Historically volatile
requirements

 Robustness to change
 Product

robustness
 Product

configurability
 Reuse

Assumptions
 Product

Environment

 Capability
 Customer

Capability
 Team Capability
 Supplier Capability

 Stakeholder
Engagement

 Customer Buy Off
 Supplier Buy off

 Industry & Business
Trends

 Certification
changes

 Industry changes
 Business changes

 Project
 Location of team &

Stakeholders
 Schedule stability
 Scope stability
 Budget to support

risk management
 Resource at the

right time

Risk
Identi-
fication

 Architecture Trade Study
 IPT - Controls
 IPT -- Controls &

Stakeholders
 Concept proposal

review
 Review

 Friendly review
 Independent review
 Review by Domain

Expert
 Early proof of concept

 Prototype - stand
alone

 Prototype in existing
control system

 Modelling - Control
System

 Modelling - Control
System + Engine

 Modelling - Control
System + Airframe

 Find & Fix
 Airframe Test Rig or

Aircraft
 Engine Test Rig

Exposure
 Integration Test

Exposure

Risk
Mitigation

 DFX - Design for
volatility

 Robust Design
 Configurable design
 Plug & Play

architecture
 Auto code

generation
 Design Guidance

 Design Guide
 Lessons Learnt
 Learn from historic

projects
 RIPL

 Stakeholder engagement
 On site stakeholder

representation
 Visibility of

stakeholder risks
 Joint risk

management
sessions

 Stakeholder
reviews

 Plan for volatility
 Delay the Function
 Plan for design

iteration
 Delay freeze of

design/
requirements

 If all else fails, plan
in contingency

Common
Mitigation Classes

Figure 8. Risk and Mitigation Classes

The process recommended to Projects is to perform a risk brainstorm first, and then use the risk
tool to "fill in" for any risks that were missed. This has the advantage that if the scope of the new
project is broader than previous experience some thought is given to the specific risks associated
with new functionality, and the risk tool is not applied "blindly".

Metrics

Three measures are proposed to Projects to assess how well they are performing technical risk
assessment:

• At the start of the Project, perform a Technical Risk Maturity Assessment and achieve an
adequate level.

• Review the actions from the Technical Review Gates and count how many technical specific
risks that were identified are not in the risk log.

• At the completion of the Project measure the scrap/rework rate

Does it Work?
Figure 10 shows a comparison of several incremental software build projects. All of the builds are
of similar size, and were performed at a similar point in the project lifecycle, by the same software
development team.

Figure 9. Risk Identification Sources

59%

5%

46%

Time

Ce
rta

in
ty

Risk Log

Gate
Review
Actions

Scrap &
Rework

45%

Technical
Risk/Change

Risk Log

Unidentified Unidentified
Risks that Risks that
Gate Review Gate Review
Actions try Actions try
to Mitigateto Mitigate

Lessons Lessons
LearnedLearned

59%

5%

46%

Time

Ce
rta

in
ty

Risk Log

Gate
Review
Actions

Scrap &
Rework

45%

Technical
Risk/Change

Risk Log

Unidentified Unidentified
Risks that Risks that
Gate Review Gate Review
Actions try Actions try
to Mitigateto Mitigate

Lessons Lessons
LearnedLearned

59%

5%

46%

Time

Ce
rta

in
ty

Risk Log

Gate
Review
Actions

Scrap &
Rework

45%

Technical
Risk/Change

Risk Log

Unidentified Unidentified
Risks that Risks that
Gate Review Gate Review
Actions try Actions try
to Mitigateto Mitigate

Lessons Lessons
LearnedLearned

Two of the builds did not incorporate Technical Risk Management and risk mitigation practices,
and show results typical of other software builds of this type - for the number of changes

incorporated in the build, around 30% to 70% additional changes were generated as a result of
inadequacies in the implementation of these changes. Three of the builds made full use of
Technical Risk Management and risk mitigation, and showed around 2% additional changes
generated. The cost to perform the risk mitigation for each build was relatively small, sufficient to
give benefit to cost ratios of greater than 100 to 1 - an investment that is hard to challenge!

Summary
• If no effort is made to control scrap and rework on a project, scrap rates of 50% can typically

occur, leading to the program costing twice as much as it could have and requiring
significantly more time to achieve a mature product.

• Contrary to expectations, changes in customer requirements are not a major driver of scrap and
rework - most is internally generated by the development team.

• Most problems are detected during requirements or design review, but most escapes also occur
in the review process. There appears to be no difference between software and hardware
problems in this respect.

• Late detection of problems more than doubles the cost of correction.

• Systems Engineering and Technical Risk Management are critical in understanding and
controlling the sources of scrap and rework

0

Similar size & similar phase Software projects

N
um

be
r o

f C
ha

ng
e

R
eq

ue
st

s

Specific
0%

6%

Specific
59%

The benefit:cost of Technical Risk
Management is better than 100:1

Change Requests
Implemented

Change Requests
raised due to errors

Technical Risks

0

Similar size & similar phase Software projects

N
um

be
r o

f C
ha

ng
e

R
eq

ue
st

s

Specific
0%

Specific
0%

6%

Specific
59%

The benefit:cost of Technical Risk
Management is better than 100:1

Change Requests
Implemented

Change Requests
raised due to errors

Technical RisksChange Requests
Implemented

Change Requests
raised due to errors

Technical Risks

Figure 10. Technical Risk Management Works

• Past experience (Lessons Learned, Technical Review Gate Actions) can provide a useful
feedback mechanism to understand the technical risks that a new project may be facing

• Metrics are available to assess Technical Risk Management capability and effectiveness on a
project

• Scrap and rework rates of less than 10% can be achieved, with benefit to cost ratios of better
than 100:1

References
1. Buede, D and Larsen, R; "An Application of the CEaVa Method", INCOSE 10th International

Symposium, Minneapolis, 2000

2. Buede, D and Larsen, R; "An Second Application of the CEaVa Method", INCOSE 11th
International Symposium, Melbourne, 2001

3. McConnell, S; "Code Complete", Microsoft Press, ISBN 0 7356 1967 0, 2004. See Table 3.1
"Average cost of fixing defects based on when they're introduced and detected" - Adapted
from "Design and Code Inspections to Reduce Errors in Program development (Fagan, 1976),
"Software Defect Removal" (Dunn 1984), "Software Process Improvement at Hughes
Aircraft" (Humphrey, Snyder and Willis 1991), "Calculating the Return on Investment from
More Effective Requirements Management" (Leffingwell 1997), "Hughes Aircraft's
Widespread Deployment of a Continuously Improving Software Process (Willis et al 1998),
"An Economic Release Decision Model: Insights into Software Project Management (Grady
1999), "What We Have Learned About Fighting Defects" (Schull et al, 2002), and "Balancing
Agility and Discipline: A Guide for the Perplexed (Boehm and Turner 2004)

4. Mawby, D and Stupples, D; "Deliver Complex Projects Successfully by Managing
Uncertainty", Proceedings of EUSEC 2000, ISBN 3-89675-935-3

5. Schoening, W; "How Planning for Success Can Lead to Catastrophic Failure", INCOSE 16th
International Symposium, Orlando, 2006

6. DeMarco, T and Lister, T; "Waltzing with Bears; Managing Risks on Software Projects",
ISBN 0-932633-60-9

7. Bone, M; "Cyclone Process – Dealing with Vague Requirements", INCOSE 18th International
Symposium, Utrecht, 2008

8. Conklin, J; "Wicked Problems and Social Complexity", from "Dialogue Mapping: Building
Shared Understanding of Wicked Problems", Wiley, 2006. Also see the Cognexus Institute
website, http://www.cognexus.org

	Introduction

	Prev:
	Next:
	Close:
	First:

