

Getting Design Right: Systems Engineering for the
Non-Engineer

Peter L. Jackson
Cornell University

Systems Engineering Program
Rhodes Hall 206
Ithaca, NY 14853

Telephone: (607) 255-9122
pj16@cornell.edu

Copyright © 2010 by Peter L. Jackson. Published and used by INCOSE with permission.

Abstract. Our goal is to disseminate the systems engineering process to as broad an audience as
possible. This audience includes freshmen engineers, students from non-engineering majors, as
well as working managers and staff from a host of different occupations. Reviewing the
impediments to the dissemination effort and the success of the Six Sigma movement, we articulate
the requirements that a curriculum for non-engineers should satisfy and we propose a particular
blended curriculum that satisfies these requirements and highlight its features. We point to three
implementations of the curriculum. Experience with this form of the curriculum is still in its
infancy.

Introduction
Motivation. Systems engineering professionals frequently express the wish that more people were
familiar with the systems engineering process. This sentiment most often seems to surface in
reference to their managers and colleagues but the benefits of the process seem so self-evident to
them that they see its application in all walks of life. The basic approach of defining a problem by
the requirements a solution must satisfy, systematically capturing the relationships between
entities in the problem and solution domains, tying tests to requirements, exploring the design
space, making the difficult trade-off decisions, defining the interfaces, and using divide and
conquer approaches to handle complexity… this approach seems so natural to them that it is
frustrating to see that it is not more broadly applied. In academia, after decades in which
mathematical analysis and engineering science prevailed in engineering curricula, design and
synthesis is now enjoying resurgence. Systems engineering programs and faculty can make an
enormous contribution to this revitalization of engineering curricula but only to the extent that the
approach is not seen by other faculty as an isolated discipline. The challenge addressed in this
paper is how to achieve a greater dissemination of the systems engineering process. The target
audience is the non-engineer, or, at least, the non-systems engineer: anyone who would benefit
from a basic understanding of the systems engineering process. This audience includes freshmen
engineers, students from non-engineering majors, as well as working managers and staff from a
host of different occupations.

Requirements for Reaching a Non-Engineering Audience
Impediments to Dissemination. It should be confessed by the systems engineering community

that one of the main impediments to broader dissemination of the systems engineering process is
our focus on complexity. The desire for the intellectual respect of our colleagues from other
disciplines leads us to emphasize the difficulty of the problems we tackle. The power of the
systems engineering process in managing the design of complex systems and our own acquired
comfort with the analytical tools and databases for managing complexity lead us to introduce the
discipline with its most intimidating aspects first.

Like many of us, I used to describe systems engineering as the process used to design complex
systems. Let us reject that definition. Systems engineering is the process by which we understand
a complex need, design elegant and harmonious solutions to meet that need, integrate those
solutions with solutions to related needs, and marshal the people and resources to build, test, and
deploy those solutions. We do not set out to make our systems complex. It is the needs that are
complex. We achieve elegance when the solution appears simpler than the need.

Not only do we emphasize the complexity of the problems, but we frequently emphasize the
complexity of the process as well. That may be an acceptable pedagogy with systems engineering
students; after all, those are the aspects that have likely attracted them to the discipline in the first
place. For the non-engineer, however, complexity is the wrong place to start.

There are other impediments to dissemination. The term “engineering” itself is a barrier with the
target audience. Engineering has long been associated by the general public with requiring
prowess in mathematics and science. But, advanced mathematics is not required for understanding
the basics of the systems engineering process. That fact underlies our belief that it can and should
be more broadly disseminated and practiced. We may, therefore, have to shed the label
“engineering.” Pride of discipline may have to be sacrificed for mission success.

Another impediment is the document-centric nature of the systems engineering process in practice.
The volume of documentation supposedly needed as evidence to demonstrate that the systems
engineering process has been followed strikes the non-engineer as tedious, wasteful, and
uninteresting. The thrill of design has been replaced with the tedium of paperwork.

The Joy of Systems Engineering. In taking on the challenge of disseminating the systems
engineering process, we should reflect on what it is that motivates us and excites us about our
discipline. The joy of systems engineering is that we do offer an approach to solving problems that
is robust, broadly accessible, broadly applicable, and easily communicated. It is the simplicity of
the underlying principles that we should be celebrating, not the complexity. Systems engineering
for the non-engineer must focus on those aspects of the process that have the greatest leverage: the
best assurance of success for the fewest obstacles to implementation.
Systems engineering is also a skill and the non-engineer needs a roadmap and motivation to
acquire that skill. Mastery of the basic skills, and, more importantly, success in their application, is
another source of joy.
Another of the joys of systems engineering is the habit of systems thinking. By this we mean the
mental discipline of identifying a system, its context, its purposes, its entities, the relationships
among its entities and between its entities and the outside world, its self-regulating behaviours, and
so on. This mental discipline requires abstraction and this can be taught. It is therefore, a joy to be
shared.
More fundamentally, the joy of systems engineering is the joy of design, of finding elegant and

harmonious solutions to all manner of problems. It is essential therefore, to view the techniques of
systems engineering not as drudgery but as techniques of discovery: discovering needs,
discovering requirements, discovering creative alternatives, discovering risks, and so on.

Lessons from the Six Sigma Movement. The systems engineering discipline has much to learn
from the success of the quality improvement movement in manufacturing and related industries.
Like systems engineering, various implementations of this movement, such as Six Sigma, have
emphasized a problem-solving methodology, tracing back to the Plan-Do-Study-Act cycle of
Deming and Shewhart (Deming, 1993). Unlike systems engineering, however, the quality
improvement movement emphasized dissemination of the methodology throughout the workforce.
Quality of product was no longer viewed as the responsibility of the Quality Control department;
quality of process was the responsibility of every machine operator. For companies implementing
the quality improvement processes, it meant a substantial commitment to training and education.
But for the educators, it meant a stripping down of the mathematics of statistical process control to
the bare minimum required for success in the hands of a high-school-educated operator. The
problem-solving methodology itself was expressed in simple steps.

Consider one example of a Six Sigma process: DMAIC (for Define, Measure, Analyze, Improve,
and Control). Table 1 lists the sub-steps involved in each of the major steps of the process. Notice
the emphasis on verbs: “identify, prioritize, develop, plot, design,” and so on. A comparison with
the systems engineering literature is likely to find a much greater emphasis on nouns and
adjectives in our papers than on action-oriented verbs. Promulgating the use of the systems
engineering process will require leadership and leadership requires the use of action-oriented
verbs.
Six Sigma has achieved remarkable penetration both domestically and abroad. Many dozens of
companies have claimed to implement it in some form. The challenge for systems engineering is to
both maintain its strength as an engineering discipline while disseminating its basic approach.

Table 1: DMAIC Activities (Source: iSixSigma.com)

Define Measure Analyze Improve Control
Identify
objectives

Identify input,
output, and
process

Stratify
process

Design of
experiments

Verify
reduction in root
cause

Identify
customers

Develop
operational
definition and
measurement
plan

Stratify data Response
surface
methods

Are additional
solutions
necessary?

Identify
customer needs
and
requirements

Plot and
analyze data

Develop
problem
statement

Generate
solution ideas

Identify and
develop
replication and
standardization
procedures

Identify quality
characteristics

Cause and
effect analysis

Identify root
causes

Determine
solution

Integrate and
manage

impacts solutions in
daily work

Prioritize
characteristics
(Critical to
customer)

Failure modes
and effects
analysis

Design root
cause
verification
analysis

Evaluate and
select solutions

Integrate
lessons learned

Create a
process map

Identify key
inputs

Validate root
causes

Communicate
solutions

 Identify key
process steps

Sources of
variation
studies

Develop pilot
plans

 Business
process
charting to
track project
metrics

Regression
analysis

Verify critical
inputs

 Collect
baseline
performance
data

Design of
experiments

Optimize
critical inputs

 Process
control

 Process
capability

Blending Systems Engineering with Six Sigma. It is worth asking whether or not systems
engineering, when reduced to an elementary problem-solving methodology, is distinct from Six
Sigma or Design for Six Sigma (DFSS). Any rational, systematic approach to problem-solving
will naturally exhibit a number of common features. It is not surprising, therefore, to find a great
deal of overlap between the systems engineering process, the various Six Sigma methodologies
(DMAIC, DMADV, IDOV, and DFSS), stage-gate product development processes, Department
of Defense system acquisition programs, and general problem-solving techniques. In fact, one of
the first assignments we typically give to new systems engineering students is to take tables
describing all these different approaches and to come up with their own six- or eight-step process
to design.

While acknowledging the overlap, it does appear that systems engineering differs from the Six
Sigma approaches (for example, Brue et al. 2003, and Yang et al., 2003) in its emphasis on system
architecture. From its origins in manufacturing, the focus in DFSS appears to be on a
decomposition of engineering characteristics, and less on the functional and structural
decomposition of a system into entities that must work together. The theme of understanding a
system in its context plays greater in the systems engineering approach. The theme of
understanding the customer plays greater in Six Sigma. We now adopt a blended approach
between the two.

Requirements for a Curriculum: With the preceding as background, we outline the

requirements we adopted in designing a curriculum for educating the non-engineer in the systems
engineering process.

1. Emphasize discovery, design, problem-solving, and validation.

2. Defer discussions of complexity until after a basic design methodology has been taught.

3. Describe the basic design methodology as a design cycle of simple steps.

4. Blend the systems engineering approach with other customer-focused and
product-development focused approaches.

5. Use action-oriented verbs to describe the steps.

6. Motivate each major design step with “What Went Wrong?” case studies.

7. Restrict techniques to those requiring only secondary-school level mathematics and
science.

8. Illustrate each step using a running example.

9. Reinforce systems thinking with repeated opportunities for abstraction.

10. Provide design challenges in both business and engineering applications.

A Blended Approach
Getting Design Right. In naming the curriculum, we chose not to use the phrase “systems
engineering” for reasons explained in the background section. Instead, we chose the phrase
“Getting Design Right,” in hopes that it would have a broader appeal among non-engineers. After
several iterations of the curriculum, we settled on a cyclic eight-step process for design as depicted
in Figure 1. As in the Six Sigma literature, each major step is broken down into action-oriented
sub-steps. The approach is a blend of design steps from multiple sources: systems engineering,
software engineering, Six Sigma, product design and development, and project management.
Topics covered are shown in Figure 2, an annotated version of the “Getting Design Right” cycle.

Although it is not evident from Figure 2, all topics are covered at a freshman level. The analytic
hierarchy process (Saaty, 1980), for example, is used to attach quantitative weights to different
product objectives. What is valuable from this approach is the concept that product objectives can
be nested and the process of developing weights can be developed in stages. The more complex
aspects of the technique (using eigenvalues to extract weights from pairwise comparisons) are not
covered.
In the next subsections, we provide a brief description of the curriculum in each of the eight major
steps.

Define the Problem. This step walks the student through a process from initial conception of a
need, through naming the problem and sketching the product concept, to a more detailed
contextual inquiry (Beyer and Holtzblatt, 1998), and finally to a behavioral analysis (use cases and
thread description) ending with a list of functional requirements. There is an emphasis on
abstraction (extracting the “voice of the customer” from unorganized customer comments) and
discovery (unusual functional requirements from use case analysis).

Measure the Need and Set Targets. This step considers two problems: how to measure customer

needs and how to translate vague statements of customer objectives into target technical
performance measures. We resolve the first problem using the Goal-Question-Metric method
(Basili and Weiss, 1984) and the second problem using the House of Quality technique (Hauser
and Clausing, 1988). Since the product concept is now defined by both behavioral and
non-behavioral requirements, we introduce the Customer Value Proposition as a test of whether it
is worth continuing the design effort.

Figure 1. Eight Steps to Getting Design Right (Jackson, 2009. CRC Press)

Figure 2. Annotated Cycle of Getting Design Right (Jackson, 2009. CRC Press)

Explore the Design Space. This step is taken from the product design and development literature
(Ulrich and Eppinger, 1995) and uses concept classification trees and concept combination tables
to suggest innovative integrated product solutions. We introduce the concept of subsystems at the
end of this step. We delayed the discussion of subsystems to this point out of a concern that
defining subsystems before considering a broad range of possible solutions can unnecessarily
restrict the system architecture. We illustrate that radical innovations in system architecture are
possible through this step.

Optimize Design Choices. In this step, we describe Pugh analysis (Pugh, 1991) as a technique to
select among alternatives when there are many attributes to the choice. We also guide the student
into formulating problems of design parameter optimization. The technique used here is the linked
house of quality in which system requirements from the house of quality now become constraints
to be satisfied at a deeper level of design. This was also a convenient step in which to introduce the
concept of product families: a product platform to exploit manufacturing commonality but easily
created derivative products to optimize the product for different market niches (Meyer and
Lehnerd, 1997).

Develop the Architecture. In this step, the student is led to think of the product at the subsystem

level and to describe how the subsystems will work together to achieve the desired behaviour of
the system. For this step, we use the operational description template (Karas, 1987, 1993, 1999,
2001) because, as shown in Figure 3, this tabular description of behaviour across multiple
subsystems nicely illustrates the integration of human interface specifications, hardware and
software specifications, test thread specifications, and interface specifications. From this, we can
also summarize functional flow and state change transitions. A variety of N2

Validate the Design. In this step the process of discovery is extended to include design reviews
and a detailed test plan for both behavioural and non-behavioural requirements. The difficulty of
testing requirements becomes evident at this point and we use the opportunity to discuss what
makes for a valid requirement. This step also includes creation of a verification cross-reference
matrix to get a systems view of the verification process. As another check on the design process,
we introduce the technique of failure modes and effects analysis (FMEA) to proactively consider
the risk of design failure.

 matrices are used to
capture system relationships. Design Structure Matrices (Baldwin and Clark, 2000) are also used
to suggest subsystem redesign. We also consider the problem of allocating system level
performance measures (cost and reliability) across multiple subsystems. These topics are not
typically covered in the Six Sigma literature.

Execute the Design. This step is frequently omitted from other design curricula but we prefer a
holistic view. We guide the student into collecting all the design, build, and test activities into a
work breakdown structure and mapping the inputs and outputs between all the activities. The
schedule can be displayed as a Gantt chart and the student adjusts the schedule to account for
resource constraints. The concept of management reviews, as distinct from technical design
reviews, is also covered.

Iterate the Design Process. Three forms of iteration are described in this step. The first is
backtracking to find a feasible solution. Ten backtracking strategies are proposed and illustrated.
The second is iterating with improvement, using lessons learned from one design cycle to improve
performance on the next. The third use of iteration is iterating by level, applying the design cycle
to each level of a complex design. It is here that we finally introduce the systems engineering
process, with its level-by-level decomposition of requirements, function, and structure, the Vee
diagram (Fossberg and Mooz, 1992), traceability of requirements, and the need for databases to
track the explosion of detail.

What’s Missing? What is missing from the curriculum, compared with other courses on design,
are domain-specific topics, such as design-for-manufacturability (mechanical engineering) or
design-for-security (software engineering). Instead, we introduce the concept of
design-for-secondary-uses. This topic becomes a placeholder for the instructor to tailor the course
to his or her particular expertise and interest.

Operator (Child)

Energy Storage
System

Locking
System

Projectile
Containment

System

Trigger
System

Projectile
Launch
System

Projectile System State Timing
Target

The child triggers
the release (see
note 1).
Information event
("trigger")

The system
shall detect the
command to
release
(laterally or
vertically) from
the child..

Information
event
("release
command")

The system
shall release
the receptacle.

Loaded, released
(unstable), and unarmed

Information
event ("release
action")

The system shall
convert energy to
translational
energy.

Energy transfer
("energy out")

The system
shall apply
translational
energy to
receptacle.
Information
event ("stop")
The system
shall stop.

Loaded, stable, unarmed

Information
event ("release
contents")

The system
shall release
the contents of
the receptacle.

Unloaded, stable,
unarmed

Material
transfer
("launch")

The projectile
flies through
the air and
lands some
distance
away.

1
se

co
nd

Human
interface
specification

Hardware
requirements
specification

(Software
requirements
specification)

Test thread
specification

Interface
requirements
specification

Figure 3. How the operation description template integrates specifications (Jackson,

2009. CRC Press)

Dive and Surface
One of the themes woven into the curriculum is the need to frequently surface from a collection of
details and summarize them into a more abstract form. Many steps of the design process are used
to illustrate this dive and surface process. For example, customer comments are summarized into
the voice of the customer, functional requirements are summarized in more abstract form, random
concepts are organized into a concept classification tree, components from multiple product
concepts are organized into abstract subsystems, and behaviour threads are summarized by
functional flow and state change diagrams. A final illustration of the process is to take all of the
concepts introduced in the curriculum and summarize them in a higher view of the design domain.
This takes the form of a systems cube, as illustrated in Figure 3. This is a modified version of the
Zachman architecture (Zachman, 1987). The concepts fall into one of three domains, Context,
System, or Designer, as described in Table 2. Seven views of a domain are described using the
suggestive names “Who, Why, How, How well, What, When, and Where” and entities and
relationships such as shown in Table 3. The systems cube thus reinforces the dive and surface
process of abstraction and serves as an organizing framework for the information that the student
has acquired.

Figure 1. TheSystems Cube (Jackson, 2009. CRC Press)

Table 2: Domains of the Systems Cube (Jackson, 2009, CRC Press)

 Domain

Context
Market opportunity, competition, the value proposition, external entities,
system boundary and interfaces with other entities, stakeholders,
unintended users, malicious users, threats, risks, strategy, and emergent
behavior

System
User and use cases, system requirements (behavioral and non-behavioral),
physical architecture, functional architecture, control architecture, design
specifications, and system validation

Designer
The design organization: its mission, roles, responsibilities, resources,
learning and exploration processes, valuation and decision making
processes, verification processes, project management, and risk
management

Table 3: Views of the Systems Cube (Jackson, 2009, CRC Press)

 Sample Entities Sample Relationships

Who
Roles, perspectives, points of
view

Organization, responsibilities, reporting
relationships

Why
Purpose, mission, goals,
objectives, values, uses, con-
straints, requirements, risks

Tradeoffs, priorities, uses to behaviors, ends to
means, conditions to actions (rules), require-
ments to requirements, requirements to
functions, risks to strategies

How
Behaviors, processes, functions,
states, tasks

Functions to objects, sequence, iteration,
triggers, functional decomposition, inputs and
outputs

How
Well

Measures of effectiveness,
business and technical
performance measures, tests and
benchmarks, chance and negative
outcomes

Measures of effectiveness to engineering
characteristics, tests to requirements, allocation
of targets to subsystems

What
Artifacts, objects, data, properties Physical architecture, bill of materials, inter-

actions, interfaces, messages

When
Timing, events, tasks, durations,
schedules

State transitions, precedence, tasks to resources,
conflicts, gridlock, feedback control

Where
Facilities, geographical or spatial
locations, infrastructure

Networks, flow, distances and clearances

Design Challenges
We have been developing product and system design challenges for our graduate systems

engineering students for a number of years. To date we have four design challenges:
• A bathroom-cleaning robot
• A home health-care monitoring station
• A night-vision system for automobiles
• An internet-based meal delivery system

Each design challenge is introduced by means of a fictional case study and a market requirements
specification document. We have found that these same design challenges work well with a
non-technical audience. The students select one of the challenges at the beginning of the course
and then work through the application of the design process to that challenge over the course of the
curriculum.

Implementations of the Curriculum
The curriculum has evolved over the years from our development of short courses to teach core
practices in systems engineering to managers and engineers in industry. The current curriculum
has been implemented in several forms: (1) as a distance learning summer school course for
college freshmen, (2) as a distance learning certificate program for working professionals, and (3)
as a text for use at other universities and corporate training facilities (Jackson, 2009). Our
experience with this form of the curriculum is still in its infancy in terms of the number of students
who have completed it. Early indications are that it is meeting its goals.

Conclusion
Our goal is to disseminate the systems engineering process to as broad an audience as possible.
Reviewing the impediments to the dissemination effort and the success of the Six Sigma
movement, we articulated the requirements that a curriculum for non-engineers should satisfy and
we proposed a particular curriculum that satisfies these requirements. The curriculum has been
implemented in three forms but there are no results yet to report.

References
Bass, L., P. Clements, and R. Kazman. 2003. Software architecture in practice. 2nd

Baldwin, C.Y. and K.B. Clark. 2000. Design rules, Vol. I: The power of modularity. Cambridge,
Mass: The MIT Press.

 Edition. ,
Indianapolis, IN: Addison-Wesley Professional.

Basili, Victor R. and D. Weiss 1984. A methodology for collecting valid software engineering
data. IEEE Transactions On Software Engineering (November):728-738.

Beyer, H. and K. Holtzblatt. 1998. Contextual design: Designing customer-centered systems. San
Francisco: Morgan Kaufmann Publishers.

Brue, Greg, and Robert G. Launsby. 2003. Design for six sigma. New York: McGraw-Hill.

Deming, W. Edwards. 1993. The new economics: for industry, government, education. MIT
Cambridge Center for Advanced Engineering Study.

Fossberg, K. and H. Mooz. 1992. The relationship of systems engineering to the project cycle.
Engineering Management Journal 4 (3): 36-43.

Hauser, J.R. and D. Clausing, 1988. The house of quality. Harvard Business Review (May-June):

63-73.

INCOSE 2006 systems engineering handbook - a guide for system life cycle processes and
activities, Version 3. ed. Cecilia Haskins.

iSixSigma. 2003. DMAIC
definition. http://www.isixsigma.com/dictionary/DMAIC-57.htm (Downloaded
November 8, 2009).

Jackson, P.L. 2009. Getting design right: A systems approach. New York: CRC Press.

Karas, Leonard and Donna Rhodes. 1987. Systems engineering technique. NATO Advisory Group
for Aerospace Research & Development Conference Proceedings No. 417.

Karas, Leonard and Donna Rhodes. 1993. Enabling concurrent engineering through behavioral
analysis. In Proceedings of the Third International Council on Systems Engineering, July.

Karas, Leonard and Donna Rhodes. 1999. The common denominator. In Proceedings of the Ninth
International Council on Systems Engineering, June.

Karas, Leonard, 2001. The systems engineering environment (SEE) Tutorial. International
Council on Systems Engineering Conference.

Oliver, D.W., T.P. Kelliher, and J.G. Keegan, Jr. 1997. Engineering complex systems with models
and objects. New York: McGraw-Hill.

Meyer, M. and A.P. Lehnerd. 1997. The power of product platforms. New York: The Free Press.

Pugh, Stuart. 1991. Total design: Integrated methods for successful product engineering.
Indianapolis, IN: Addison-Wesley.
Saaty, T.L. 1980. The analytic hierarchy process. New York: McGraw Hill.

Ulrich, K.T. and S.D. Eppinger. 1995. Product design and development. New York: McGraw-Hill.

Yang, Kai, and Basem El-Haik. 2003. Design for six sigma: A roadmap for product development.
New York: McGraw-Hill.

Zachman, J.A. 1987. A framework for information systems architecture. IBM Systems Journal 26
(3).

BIOGRAPHY
Peter Jackson is a Professor in the School of Operations Research and Information Engineering,
Cornell University, and was Director of the Cornell Systems Engineering Program (2003-2009).
He holds degrees in economics (B.A. 1975, University of Western Ontario), statistics (M.Sc.,
1978, Stanford University), and operations research (Ph.D. 1980, Stanford University). Jackson’s
research and consulting interests include manufacturing systems design and supply chain
management. Jackson is the recipient of several awards for curriculum innovation in addition to
numerous student-voted awards for teaching excellence. He is the recent author of a text used to
introduce systems engineering to a non-technical audience.

http://www.isixsigma.com/dictionary/DMAIC-57.htm�

	Introduction
	Requirements for Reaching a Non-Engineering Audience
	Control
	Improve
	Analyze
	Measure
	Define
	A Blended Approach
	Dive and Surface
	Domain
	Context
	System
	Designer
	Sample Relationships
	Sample Entities
	Who
	Why
	How
	How Well
	What
	When
	Where
	Design Challenges
	Implementations of the Curriculum
	Conclusion
	References
	BIOGRAPHY

	Prev:
	Next:
	Close:
	First:

