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Abstract. Our goal is to disseminate the systems engineering process to as broad an audience as 
possible. This audience includes freshmen engineers, students from non-engineering majors, as 
well as working managers and staff from a host of different occupations. Reviewing the 
impediments to the dissemination effort and the success of the Six Sigma movement, we articulate 
the requirements that a curriculum for non-engineers should satisfy and we propose a particular 
blended curriculum that satisfies these requirements and highlight its features. We point to three 
implementations of the curriculum. Experience with this form of the curriculum is still in its 
infancy. 

Introduction 
Motivation. Systems engineering professionals frequently express the wish that more people were 
familiar with the systems engineering process. This sentiment most often seems to surface in 
reference to their managers and colleagues but the benefits of the process seem so self-evident to 
them that they see its application in all walks of life. The basic approach of defining a problem by 
the requirements a solution must satisfy, systematically capturing the relationships between 
entities in the problem and solution domains, tying tests to requirements, exploring the design 
space, making the difficult trade-off decisions, defining the interfaces, and using divide and 
conquer approaches to handle complexity… this approach seems so natural to them that it is 
frustrating to see that it is not more broadly applied. In academia, after decades in which 
mathematical analysis and engineering science prevailed in engineering curricula, design and 
synthesis is now enjoying resurgence. Systems engineering programs and faculty can make an 
enormous contribution to this revitalization of engineering curricula but only to the extent that the 
approach is not seen by other faculty as an isolated discipline. The challenge addressed in this 
paper is how to achieve a greater dissemination of the systems engineering process. The target 
audience is the non-engineer, or, at least, the non-systems engineer: anyone who would benefit 
from a basic understanding of the systems engineering process. This audience includes freshmen 
engineers, students from non-engineering majors, as well as working managers and staff from a 
host of different occupations. 

Requirements for Reaching a Non-Engineering Audience 
Impediments to Dissemination.  It should be confessed by the systems engineering community 



  

that one of the main impediments to broader dissemination of the systems engineering process is 
our focus on complexity. The desire for the intellectual respect of our colleagues from other 
disciplines leads us to emphasize the difficulty of the problems we tackle. The power of the 
systems engineering process in managing the design of complex systems and our own acquired 
comfort with the analytical tools and databases for managing complexity lead us to introduce the 
discipline with its most intimidating aspects first. 
  
Like many of us, I used to describe systems engineering as the process used to design complex 
systems. Let us reject that definition.  Systems engineering is the process by which we understand 
a complex need, design elegant and harmonious solutions to meet that need, integrate those 
solutions with solutions to related needs, and marshal the people and resources to build, test, and 
deploy those solutions. We do not set out to make our systems complex. It is the needs that are 
complex. We achieve elegance when the solution appears simpler than the need. 
 
Not only do we emphasize the complexity of the problems, but we frequently emphasize the 
complexity of the process as well. That may be an acceptable pedagogy with systems engineering 
students; after all, those are the aspects that have likely attracted them to the discipline in the first 
place. For the non-engineer, however, complexity is the wrong place to start. 
 
There are other impediments to dissemination. The term “engineering” itself is a barrier with the 
target audience. Engineering has long been associated by the general public with requiring 
prowess in mathematics and science. But, advanced mathematics is not required for understanding 
the basics of the systems engineering process. That fact underlies our belief that it can and should 
be more broadly disseminated and practiced. We may, therefore, have to shed the label 
“engineering.” Pride of discipline may have to be sacrificed for mission success.  
 
Another impediment is the document-centric nature of the systems engineering process in practice. 
The volume of documentation supposedly needed as evidence to demonstrate that the systems 
engineering process has been followed strikes the non-engineer as tedious, wasteful, and 
uninteresting. The thrill of design has been replaced with the tedium of paperwork. 

The Joy of Systems Engineering. In taking on the challenge of disseminating the systems 
engineering process, we should reflect on what it is that motivates us and excites us about our 
discipline. The joy of systems engineering is that we do offer an approach to solving problems that 
is robust, broadly accessible, broadly applicable, and easily communicated. It is the simplicity of 
the underlying principles that we should be celebrating, not the complexity. Systems engineering 
for the non-engineer must focus on those aspects of the process that have the greatest leverage: the 
best assurance of success for the fewest obstacles to implementation.  
Systems engineering is also a skill and the non-engineer needs a roadmap and motivation to 
acquire that skill. Mastery of the basic skills, and, more importantly, success in their application, is 
another source of joy. 
Another of the joys of systems engineering is the habit of systems thinking. By this we mean the 
mental discipline of identifying a system, its context, its purposes, its entities, the relationships 
among its entities and between its entities and the outside world, its self-regulating behaviours, and 
so on. This mental discipline requires abstraction and this can be taught. It is therefore, a joy to be 
shared. 
More fundamentally, the joy of systems engineering is the joy of design, of finding elegant and 



 

  

harmonious solutions to all manner of problems. It is essential therefore, to view the techniques of 
systems engineering not as drudgery but as techniques of discovery: discovering needs, 
discovering requirements, discovering creative alternatives, discovering risks, and so on. 

Lessons from the Six Sigma Movement.  The systems engineering discipline has much to learn 
from the success of the quality improvement movement in manufacturing and related industries. 
Like systems engineering, various implementations of this movement, such as Six Sigma, have 
emphasized a problem-solving methodology, tracing back to the Plan-Do-Study-Act cycle of 
Deming and Shewhart (Deming, 1993). Unlike systems engineering, however, the quality 
improvement movement emphasized dissemination of the methodology throughout the workforce. 
Quality of product was no longer viewed as the responsibility of the Quality Control department; 
quality of process was the responsibility of every machine operator. For companies implementing 
the quality improvement processes, it meant a substantial commitment to training and education. 
But for the educators, it meant a stripping down of the mathematics of statistical process control to 
the bare minimum required for success in the hands of a high-school-educated operator. The 
problem-solving methodology itself was expressed in simple steps.  

 
Consider one example of a Six Sigma process: DMAIC (for Define, Measure, Analyze, Improve, 
and Control). Table 1 lists the sub-steps involved in each of the major steps of the process. Notice 
the emphasis on verbs: “identify, prioritize, develop, plot, design,” and so on. A comparison with 
the systems engineering literature is likely to find a much greater emphasis on nouns and 
adjectives in our papers than on action-oriented verbs. Promulgating the use of the systems 
engineering process will require leadership and leadership requires the use of action-oriented 
verbs. 
Six Sigma has achieved remarkable penetration both domestically and abroad. Many dozens of 
companies have claimed to implement it in some form. The challenge for systems engineering is to 
both maintain its strength as an engineering discipline while disseminating its basic approach. 
 

Table 1: DMAIC Activities (Source: iSixSigma.com) 

Define Measure Analyze Improve Control 
Identify 
objectives 

Identify input, 
output, and 
process 

Stratify 
process 

Design of 
experiments 

Verify 
reduction in root 
cause 

Identify 
customers 

Develop 
operational 
definition and 
measurement 
plan 

Stratify data Response 
surface 
methods 

Are additional 
solutions 
necessary? 

Identify 
customer needs 
and 
requirements 

Plot and 
analyze data 

Develop 
problem 
statement 

Generate 
solution ideas 

Identify and 
develop 
replication and 
standardization 
procedures 

Identify quality 
characteristics 

Cause and 
effect analysis 

Identify root 
causes 

Determine 
solution 

Integrate and 
manage 



  

impacts solutions in 
daily work 

Prioritize 
characteristics 
(Critical to 
customer) 

Failure modes 
and effects 
analysis 

Design root 
cause 
verification 
analysis 

Evaluate and 
select solutions 

Integrate 
lessons learned 

Create a 
process map 

Identify key 
inputs 

Validate root 
causes 

Communicate 
solutions 

 

 Identify key 
process steps 

Sources of 
variation 
studies 

Develop pilot 
plans 

 

 Business 
process 
charting to 
track project 
metrics 

Regression 
analysis 

Verify critical 
inputs 

 

 Collect 
baseline 
performance 
data 

Design of 
experiments 

Optimize 
critical inputs 

 

  Process 
control 

  

  Process 
capability 

  

 

Blending Systems Engineering with Six Sigma. It is worth asking whether or not systems 
engineering, when reduced to an elementary problem-solving methodology, is distinct from Six 
Sigma or Design for Six Sigma (DFSS). Any rational, systematic approach to problem-solving 
will naturally exhibit a number of common features. It is not surprising, therefore, to find a great 
deal of overlap between the systems engineering process, the various Six Sigma methodologies 
(DMAIC, DMADV, IDOV, and DFSS), stage-gate product development processes, Department 
of Defense system acquisition programs, and general problem-solving techniques. In fact, one of 
the first assignments we typically give to new systems engineering students is to take tables 
describing all these different approaches and to come up with their own six- or eight-step process 
to design.  

While acknowledging the overlap, it does appear that systems engineering differs from the Six 
Sigma approaches (for example, Brue et al. 2003, and Yang et al., 2003) in its emphasis on system 
architecture. From its origins in manufacturing, the focus in DFSS appears to be on a 
decomposition of engineering characteristics, and less on the functional and structural 
decomposition of a system into entities that must work together. The theme of understanding a 
system in its context plays greater in the systems engineering approach. The theme of 
understanding the customer plays greater in Six Sigma. We now adopt a blended approach 
between the two. 

Requirements for a Curriculum:  With the preceding as background, we outline the 



 

  

requirements we adopted in designing a curriculum for educating the non-engineer in the systems 
engineering process. 

1. Emphasize discovery, design, problem-solving, and validation. 

2. Defer discussions of complexity until after a basic design methodology has been taught. 

3. Describe the basic design methodology as a design cycle of simple steps. 

4. Blend the systems engineering approach with other customer-focused and 
product-development focused approaches. 

5. Use action-oriented verbs to describe the steps. 

6. Motivate each major design step with “What Went Wrong?” case studies. 

7. Restrict techniques to those requiring only secondary-school level mathematics and 
science. 

8. Illustrate each step using a running example. 

9. Reinforce systems thinking with repeated opportunities for abstraction. 

10. Provide design challenges in both business and engineering applications. 

A Blended Approach 
Getting Design Right.  In naming the curriculum, we chose not to use the phrase “systems 
engineering” for reasons explained in the background section. Instead, we chose the phrase 
“Getting Design Right,” in hopes that it would have a broader appeal among non-engineers. After 
several iterations of the curriculum, we settled on a cyclic eight-step process for design as depicted 
in Figure 1. As in the Six Sigma literature, each major step is broken down into action-oriented 
sub-steps. The approach is a blend of design steps from multiple sources: systems engineering, 
software engineering, Six Sigma, product design and development, and project management. 
Topics covered are shown in Figure 2, an annotated version of the “Getting Design Right” cycle. 

 
Although it is not evident from Figure 2, all topics are covered at a freshman level. The analytic 
hierarchy process (Saaty, 1980), for example, is used to attach quantitative weights to different 
product objectives. What is valuable from this approach is the concept that product objectives can 
be nested and the process of developing weights can be developed in stages. The more complex 
aspects of the technique (using eigenvalues to extract weights from pairwise comparisons) are not 
covered. 
In the next subsections, we provide a brief description of the curriculum in each of the eight major 
steps. 

Define the Problem. This step walks the student through a process from initial conception of a 
need, through naming the problem and sketching the product concept, to a more detailed 
contextual inquiry (Beyer and Holtzblatt, 1998), and finally to a behavioral analysis (use cases and 
thread description) ending with a list of functional requirements. There is an emphasis on 
abstraction (extracting the “voice of the customer” from unorganized customer comments) and 
discovery (unusual functional requirements from use case analysis).  

Measure the Need and Set Targets. This step considers two problems: how to measure customer 



  

needs and how to translate vague statements of customer objectives into target technical 
performance measures. We resolve the first problem using the Goal-Question-Metric method 
(Basili and Weiss, 1984) and the second problem using the House of Quality technique (Hauser 
and Clausing, 1988). Since the product concept is now defined by both behavioral and 
non-behavioral requirements, we introduce the Customer Value Proposition as a test of whether it 
is worth continuing the design effort. 

 

 
Figure 1. Eight Steps to Getting Design Right (Jackson, 2009. CRC Press) 



 

  

 
Figure 2. Annotated Cycle of Getting Design Right (Jackson, 2009. CRC Press) 

Explore the Design Space. This step is taken from the product design and development literature 
(Ulrich and Eppinger, 1995) and uses concept classification trees and concept combination tables 
to suggest innovative integrated product solutions. We introduce the concept of subsystems at the 
end of this step. We delayed the discussion of subsystems to this point out of a concern that 
defining subsystems before considering a broad range of possible solutions can unnecessarily 
restrict the system architecture. We illustrate that radical innovations in system architecture are 
possible through this step. 

Optimize Design Choices. In this step, we describe Pugh analysis (Pugh, 1991) as a technique to 
select among alternatives when there are many attributes to the choice. We also guide the student 
into formulating problems of design parameter optimization. The technique used here is the linked 
house of quality in which system requirements from the house of quality now become constraints 
to be satisfied at a deeper level of design. This was also a convenient step in which to introduce the 
concept of product families: a product platform to exploit manufacturing commonality but easily 
created derivative products to optimize the product for different market niches (Meyer and 
Lehnerd, 1997). 

Develop the Architecture. In this step, the student is led to think of the product at the subsystem 



  

level and to describe how the subsystems will work together to achieve the desired behaviour of 
the system. For this step, we use the operational description template (Karas, 1987, 1993, 1999, 
2001) because, as shown in Figure 3, this tabular description of behaviour across multiple 
subsystems nicely illustrates the integration of human interface specifications, hardware and 
software specifications, test thread specifications, and interface specifications. From this, we can 
also summarize functional flow and state change transitions. A variety of N2

Validate the Design. In this step the process of discovery is extended to include design reviews 
and a detailed test plan for both behavioural and non-behavioural requirements. The difficulty of 
testing requirements becomes evident at this point and we use the opportunity to discuss what 
makes for a valid requirement. This step also includes creation of a verification cross-reference 
matrix to get a systems view of the verification process. As another check on the design process, 
we introduce the technique of failure modes and effects analysis (FMEA) to proactively consider 
the risk of design failure. 

 matrices are used to 
capture system relationships. Design Structure Matrices (Baldwin and Clark, 2000) are also used 
to suggest subsystem redesign. We also consider the problem of allocating system level 
performance measures (cost and reliability) across multiple subsystems. These topics are not 
typically covered in the Six Sigma literature. 

Execute the Design. This step is frequently omitted from other design curricula but we prefer a 
holistic view. We guide the student into collecting all the design, build, and test activities into a 
work breakdown structure and mapping the inputs and outputs between all the activities. The 
schedule can be displayed as a Gantt chart and the student adjusts the schedule to account for 
resource constraints. The concept of management reviews, as distinct from technical design 
reviews, is also covered. 

Iterate the Design Process. Three forms of iteration are described in this step. The first is 
backtracking to find a feasible solution. Ten backtracking strategies are proposed and illustrated. 
The second is iterating with improvement, using lessons learned from one design cycle to improve 
performance on the next. The third use of iteration is iterating by level, applying the design cycle 
to each level of a complex design. It is here that we finally introduce the systems engineering 
process, with its level-by-level decomposition of requirements, function, and structure, the Vee 
diagram (Fossberg and Mooz, 1992), traceability of requirements, and the need for databases to 
track the explosion of detail. 
 
What’s Missing? What is missing from the curriculum, compared with other courses on design, 
are domain-specific topics, such as design-for-manufacturability (mechanical engineering) or 
design-for-security (software engineering). Instead, we introduce the concept of 
design-for-secondary-uses. This topic becomes a placeholder for the instructor to tailor the course 
to his or her particular expertise and interest. 



 

  

Operator (Child)

Energy Storage 
System

Locking 
System

Projectile 
Containment 

System

Trigger 
System

Projectile 
Launch 
System

Projectile System State Timing 
Target

The child triggers 
the release (see 
note 1).
Information event 
("trigger")

The system 
shall detect the 
command to 
release 
(laterally or 
vertically) from 
the child..

Information 
event 
("release 
command")

The system 
shall release 
the receptacle.

Loaded, released 
(unstable), and unarmed

Information 
event ("release 
action")

The system shall 
convert energy to 
translational 
energy.

Energy transfer 
("energy out")

The system 
shall apply 
translational 
energy to 
receptacle.
Information 
event ("stop")
The system 
shall stop.

Loaded, stable, unarmed

Information 
event ("release 
contents")

The system 
shall release 
the contents of 
the receptacle.

Unloaded, stable, 
unarmed

Material 
transfer 
("launch")

The projectile 
flies through 
the air and 
lands some 
distance 
away.

1 
se

co
nd

Human
interface
specification

Hardware
requirements
specification

(Software
requirements
specification)

Test thread
specification

Interface
requirements
specification

 
Figure 3. How the operation description template integrates specifications (Jackson, 

2009. CRC Press) 
  



  

Dive and Surface 
One of the themes woven into the curriculum is the need to frequently surface from a collection of 
details and summarize them into a more abstract form. Many steps of the design process are used 
to illustrate this dive and surface process. For example, customer comments are summarized into 
the voice of the customer, functional requirements are summarized in more abstract form, random 
concepts are organized into a concept classification tree, components from multiple product 
concepts are organized into abstract subsystems, and behaviour threads are summarized by 
functional flow and state change diagrams. A final illustration of the process is to take all of the 
concepts introduced in the curriculum and summarize them in a higher view of the design domain. 
This takes the form of a systems cube, as illustrated in Figure 3. This is a modified version of the 
Zachman architecture (Zachman, 1987). The concepts fall into one of three domains, Context, 
System, or Designer, as described in Table 2. Seven views of a domain are described using the 
suggestive names “Who, Why, How, How well, What, When, and Where” and entities and 
relationships such as shown in Table 3. The systems cube thus reinforces the dive and surface 
process of abstraction and serves as an organizing framework for the information that the student 
has acquired. 

 
 

Figure 1. TheSystems Cube  (Jackson, 2009. CRC Press) 
 

Table 2: Domains of the Systems Cube (Jackson, 2009, CRC Press) 



 

  

 Domain 

Context 
Market opportunity, competition, the value proposition, external entities, 
system boundary and interfaces with other entities, stakeholders, 
unintended users, malicious users, threats, risks, strategy, and emergent 
behavior 

System 
User and use cases, system requirements (behavioral and non-behavioral), 
physical architecture, functional architecture, control architecture, design 
specifications, and system validation 

Designer 
The design organization: its mission, roles, responsibilities, resources, 
learning and exploration processes, valuation and decision making 
processes, verification processes, project management, and risk 
management 

 
 

Table 3: Views of the Systems Cube (Jackson, 2009, CRC Press) 

 Sample Entities Sample Relationships 

Who 
Roles, perspectives, points of 
view 

Organization, responsibilities, reporting 
relationships 

Why 
Purpose, mission, goals, 
objectives, values, uses, con-
straints, requirements, risks 

Tradeoffs, priorities, uses to behaviors, ends to 
means, conditions to actions (rules), require-
ments to requirements, requirements to 
functions, risks to strategies 

How 
Behaviors, processes, functions, 
states, tasks 

Functions to objects, sequence, iteration, 
triggers, functional decomposition, inputs and 
outputs 

How 
Well 

Measures of effectiveness, 
business and technical 
performance measures, tests and 
benchmarks, chance and negative 
outcomes 

Measures of effectiveness to engineering 
characteristics, tests to requirements, allocation 
of targets to subsystems 

What 
Artifacts, objects, data, properties Physical architecture, bill of materials, inter-

actions, interfaces, messages 

When 
Timing, events,  tasks, durations, 
schedules 

State transitions, precedence, tasks to resources, 
conflicts, gridlock, feedback control 

Where 
Facilities, geographical or spatial 
locations, infrastructure 

Networks, flow, distances and clearances 

 

Design Challenges 
We have been developing product and system design challenges for our graduate systems 



  

engineering students for a number of years. To date we have four design challenges: 
• A bathroom-cleaning robot 
• A home health-care monitoring station 
• A night-vision system for automobiles 
• An internet-based meal delivery system 

Each design challenge is introduced by means of a fictional case study and a market requirements 
specification document. We have found that these same design challenges work well with a 
non-technical audience. The students select one of the challenges at the beginning of the course 
and then work through the application of the design process to that challenge over the course of the 
curriculum. 

Implementations of the Curriculum 
The curriculum has evolved over the years from our development of short courses to teach core 
practices in systems engineering to managers and engineers in industry. The current curriculum 
has been implemented in several forms: (1) as a distance learning summer school course for 
college freshmen, (2) as a distance learning certificate program for working professionals, and (3) 
as a text for use at other universities and corporate training facilities (Jackson, 2009). Our 
experience with this form of the curriculum is still in its infancy in terms of the number of students 
who have completed it. Early indications are that it is meeting its goals. 

Conclusion 
Our goal is to disseminate the systems engineering process to as broad an audience as possible. 
Reviewing the impediments to the dissemination effort and the success of the Six Sigma 
movement, we articulated the requirements that a curriculum for non-engineers should satisfy and 
we proposed a particular curriculum that satisfies these requirements. The curriculum has been 
implemented in three forms but there are no results yet to report. 

References 
Bass, L., P. Clements, and R. Kazman. 2003. Software architecture in practice. 2nd

Baldwin, C.Y. and  K.B. Clark. 2000. Design rules, Vol. I: The power of modularity. Cambridge, 
Mass: The MIT Press. 

 Edition. , 
Indianapolis, IN: Addison-Wesley Professional. 

Basili, Victor R. and D. Weiss 1984. A methodology for collecting valid software engineering 
data. IEEE Transactions On Software Engineering (November):728-738. 

Beyer, H. and K. Holtzblatt. 1998. Contextual design: Designing customer-centered systems. San 
Francisco: Morgan Kaufmann Publishers. 

Brue, Greg, and Robert G. Launsby. 2003. Design for six sigma. New York: McGraw-Hill. 

Deming, W. Edwards. 1993. The new economics: for industry, government, education. MIT 
Cambridge Center for Advanced Engineering Study. 

Fossberg, K. and H. Mooz. 1992. The relationship of systems engineering to the project cycle. 
Engineering Management Journal 4 (3): 36-43. 

Hauser, J.R. and D. Clausing, 1988. The house of quality.  Harvard Business Review (May-June): 



 

  

63-73. 

INCOSE 2006 systems engineering handbook - a guide for system life cycle processes and 
activities, Version 3. ed. Cecilia Haskins. 

iSixSigma. 2003. DMAIC 
definition. http://www.isixsigma.com/dictionary/DMAIC-57.htm (Downloaded 
November 8, 2009). 

Jackson, P.L. 2009. Getting design right: A systems approach. New York: CRC Press. 

Karas, Leonard and Donna Rhodes. 1987. Systems engineering technique. NATO Advisory Group 
for Aerospace Research & Development Conference Proceedings No. 417. 

Karas, Leonard and Donna Rhodes. 1993. Enabling concurrent engineering through behavioral 
analysis. In Proceedings of the Third International Council on Systems Engineering, July. 

Karas, Leonard and Donna Rhodes. 1999. The common denominator. In Proceedings of the Ninth 
International Council on Systems Engineering, June. 

Karas, Leonard, 2001. The systems engineering environment (SEE) Tutorial.  International 
Council on Systems Engineering Conference.  

Oliver, D.W., T.P. Kelliher, and J.G. Keegan, Jr. 1997. Engineering complex systems with models 
and objects. New York: McGraw-Hill. 

Meyer, M. and A.P. Lehnerd. 1997. The power of product platforms. New York: The Free Press. 

Pugh, Stuart. 1991. Total design: Integrated methods for successful product engineering. 
Indianapolis, IN: Addison-Wesley. 
Saaty, T.L. 1980. The analytic hierarchy process. New York: McGraw Hill. 

Ulrich, K.T. and S.D. Eppinger. 1995. Product design and development. New York: McGraw-Hill. 

Yang, Kai, and Basem El-Haik. 2003. Design for six sigma: A roadmap for product development. 
New York: McGraw-Hill. 

Zachman, J.A. 1987. A framework for information systems architecture. IBM Systems Journal  26 
(3). 

BIOGRAPHY 
Peter Jackson is a Professor in the School of Operations Research and Information Engineering, 
Cornell University, and was Director of the Cornell Systems Engineering Program (2003-2009). 
He holds degrees in economics (B.A. 1975, University of Western Ontario), statistics (M.Sc., 
1978, Stanford University), and operations research (Ph.D. 1980, Stanford University). Jackson’s 
research and consulting interests include manufacturing systems design and supply chain 
management. Jackson is the recipient of several awards for curriculum innovation in addition to 
numerous student-voted awards for teaching excellence. He is the recent author of a text used to 
introduce systems engineering to a non-technical audience. 

 

http://www.isixsigma.com/dictionary/DMAIC-57.htm�

	Introduction
	Requirements for Reaching a Non-Engineering Audience
	Control
	Improve
	Analyze
	Measure
	Define
	A Blended Approach
	Dive and Surface
	Domain
	Context
	System
	Designer
	Sample Relationships
	Sample Entities
	Who
	Why
	How
	How Well
	What
	When
	Where
	Design Challenges
	Implementations of the Curriculum
	Conclusion
	References
	BIOGRAPHY

	Prev: 
	Next: 
	Close: 
	First: 


