

 Systems and Software Architecting: A Unified Approach

 Howard Eisner
 The George Washington University
 heisner@gwu.edu

Abstract. Formulating a sound architecture has become one of the most important
elements in systems engineering, software engineering and systems integration.
Significant work has been done in the architecting of systems and, mostly as a separate
matter, the architecting of software. This paper focuses upon the issue of a unified
approach to both systems and software architecting. A specific procedure for a unified
method is suggested and illustrated.

Introduction

 There has been a great deal of attention paid to the architecting of systems, especially
over the past 15+ years or so. Architecting has been accepted, in the main, as the first of a
two-level design process for systems. The second level, following architecting, can be
described as subsystem design [1]. In principle, both levels of design need to be
addressed before significant parts of the system are built. Two analogies come to mind in
this regard. The first has to do with A & E (Architect and Engineer) firms that have
existed for years, whereby the architects do the first level of design, followed by the
engineers at a more detailed level. Perhaps another analogy is the original formulation of
the steps necessary to carry out software development [2, 3]. These steps include
preliminary design (as per architecting), followed by detailed design (as per subsystem
design as the second level).

 Notwithstanding the above two-step perspective, it can also be argued that for some
domains and very large systems, a recursive approach involving many levels, or steps, is
more appropriate. This notion is accepted here in certain situations, but they will not be
further explored in this paper.

 A particularly important milestone in the matter of system architecting was the
publishing of Rechtin’s “Systems Architecting” book [4]. This landmark treatise
established a framework for thinking about all aspects of architecting systems. Special
attention was paid to the systems architect, boundaries and interfaces, multi-dimensional
challenges, and a list of extremely useful heuristics. A few years later (1997), Rechtin
teamed with Maier to look more deeply into the complex issues surrounding the
architecting of systems [5]. These two books did a lot to encourage researchers, as well as
practitioners, to try to figure out how to construct system architectures that were sound
and practical. A third activity, one sponsored by the Department of Defense (DoD),

attempted to define the way in which architecting should be accomplished. This was
called an “Architectural Framework”, and has now been designated as the DoDAF [6].
With this brief background, we now provide a short overview of system architecting
approaches.

System Architecting Approaches

 The DoDAF approach to architecting, cited above [6], is based upon the notion that
three “views” are critical, namely, the:
 operational view – a description of the tasks and activities, operational elements,

and information flows required to accomplish or support a military operation
 systems view – a description, including graphics, of systems and interconnections

providing for, or supporting, warfighting functions
 technical view – the minimal set of rules governing the arrangement, interaction,

and interdependence of system parts or elements, whose purpose is to ensure that
a conformant system satisfies a specified set of requirements

These basic views were expanded into very specific sets of Essential and Supporting
Views in these three categories, while adding a category called “All Views”.

 The original framework showed a six-step process for constructing an architecture.
These steps are reiterated here in Table 1:

 1 – Articulate the intended use of the architecture
 2 – Establish the scope, context, environment (and any other assumptions) of the
 architecture
 3 – Determine which characteristics the architecture needs to capture
 4 – Establish which architecture views and supporting products should be built
 5 – Build the needed products
 6 – Use the architecture for its intended purpose

 Table 1 – Steps Suggested by DoDAF for Building an Architecture

The three basic view approach articulated in the DODAF has been carried forth since
approximately 1996, with enhancements, explanations and improvements forthcoming
with successive versions. Staying within the view context, the Executive Summary in the
2007 documentation of the DoDAF approach [6] defined an architecture as:

 the structure of components, their relationships, and the principles and guidelines
 governing their design and evolution over time

This approach has been extremely important as a point of departure for the DoD as well
as other executive agencies of the government and selected parts of industry. To facilitate
a comparison, the following has been documented by this author [1]:

 An architecture is an “organized top-down selection and description of design
choices for all the important system functions and sub-functions, placed in a
context to assure interoperability and the satisfaction of system requirements”

 In addition to the well-known DoDAF approach, there are other notions that have been
set forth, all of which pertain directly to constructing a system architecture. These
include:

 MoDAF (Ministry of Defence architecting framework)
 SOA – the service-oriented architecture
 EA – the enterprise architecture

The MoDAF comes from the UK and expands the DoDAF approach by, for example,
adding a strategic view, an acquisition view and a connection to enterprise architecting.
The SOA uses internet available services to carry out tasking from remote locations. The
Enterprise Architecture provides “a strategic planning framework that relates and aligns
information technology (IT) with the business functions that it supports”. [1] Yet another
approach, the Zachman method as applied to enterprise architecting, maps the classical
six questions (who, what, when, where, why, how) against ways to transform “an abstract
idea into an instantiation” [7].

 It is clear that there is considerable interest in systems architecting and many
approaches that have merit and need to be further pursued.

Software Architecting Concepts

 Examinations of software architecting are incomplete without at least some reference to
Grady Booch, who has made many significant contributions to this field, and also writes
the “on architecture” column for the IEEE Computer Society. One of his articles is called
“the Irrelevance of Architecture” [8]. Despite this provocative title, Booch concludes
with “In retrospect, I think I’ve titled this column incorrectly: architecture is quite
relevant”.

 The software engineering field has been explored by a large number of researchers and
practitioners. A smaller group has focused upon the matter of software architectures. A
quite recent book [9] has much to say about the design of architectures along with such
topics as connectors, modeling, analysis, visualization, and many others. Relevant
definitions in this treatise include:

 “A software system’s architecture is the set of principal design decisions made

about the system”, and
 “a Reference Architecture is the set of principal design decisions that are

simultaneously applicable to multiple related systems, typically within an
application domain, with explicitly defined points of variation” [9]

Other significant investigators into the field of software architecting include:D. Garlan,
M. Shaw, L. Bass, P. Clements, R. Kazman, D. Perry, A. Wolf, B. Hayes-Roth and P.
Kruchten. Key notions regarding software architectures that appear in the works of these
and other researchers (e.g., the Software Engineering Institute at Carnegie-Mellon
University) include:

 processing elements, data elements, connecting elements, functional components,

abstract system specifications, issues beyond the algorithm and data structures,
overall structure, composition and selection of design alternatives, functional
partitioning, allocation of domain function, properties of components,
relationships between and among components

 In addition, we have the following important observations:

(1) “the most difficult design task…is the decomposition of the whole into a module
hierarchy” [Wirth, 10]

(2) “from this process, one identifies modules of solutions or of data whose further
refinement can proceed independently of other work [Brooks,11]

(3) “the effectiveness of a ‘modularization’ is dependent upon the criteria used in
dividing the system into modules” [Parnas, 12]

 We see patterns in these descriptions suggesting that software needs to be decomposed
into a module hierarchy, that these modules need to be as independent as possible from
one another, that criteria for developing these modules need to be addressed and defined,
and that these modules may be interpreted as software components. We also see the
notions of functional components, functional partitioning and the allocation of domain
function.

 Finally, with respect to software architecting, we look very briefly here at a suggestion
for how to reconcile system and software architectures, as set forth by M. Maier [13]. The
author points out that standard systems engineering approaches are “often not well suited
to support complex software developments”. The systems side favors functional
definition and decomposition whereas the software side tends to favor a data-based
approach. Moreover, the author says that “the most successful very large system
architectures typically take a strongly-layered approach”. A definitive solution to this
apparent divergence between systems and software architecting is not completely clear,
but directions are suggested.

A Unified Approach

 The unified approach to architecting, as described in this paper, is the same whether
dealing with hardware, software, or some combination thereof. Indeed, that is the
strength of the approach, as it follows the seven essential steps cited in Table 2.

Step 1 – Functional Decomposition
Step 2 - Requirements Definition and Allocation

Step 3 – Synthesis of Alternatives
Step 4 – Analysis of Alternatives
Step 5 – Cost Effectiveness View of Alternatives
Step 6 - Creation of Additional Views
Step 7 – Selection of Preferred Architecture

 Table 2 – Steps for Implementing the Unified Approach to Architecting

Each of these steps is discussed in some detail below.

Step 1 – Functional Decomposition

 Whatever the system, and whatever its size, the first essential step is to decompose it
into its major functions and sub-functions. This decomposition is essentially hierarchical,
and there should be no question as to whether or not a function is within or outside the
scope of the system. The decomposition is carried out so as to minimize the interfaces
between parallel decomposed elements. The decomposition is not based upon the
physical system; only on the functions that must be performed. The architecting team
must be careful to not decompose to a level of detail where one is trying to “look at every
tree in the forest”. To try to operate at the level of the “tree” is to jeopardize the entire
architecting process.

 An example of the step of functional decomposition is shown in Table 3, taken from a
real-world system developed by NASA [14].

FUNCTION 1 – Flight Operations
Sub-Function 1.1 – Mission Control
Sub-Function 1.2 – Mission Planning and Scheduling
Sub-Function 1,3 – Instrument Command Support
Sub-Function 1.4 – Mission Operations
FUNCTION 2 – Science Data Processing
Sub-Function 2.1 – Data Processing
Sub-Function 2.2 – Data Archiving
Sub-Function 2.3 – Data Distribution
Sub-function 2.4 – Data Information Management
Sub-Function 2.5 – User Support for Data Information
Sub-Function 2.6 – User Support for Data Requests
Sub-Function 2.7 – User Support for Data Acquisition and Processing Requests
FUNCTION 3 – Communications and System Management
Sub-Function 3.1 – Distribution of EOS Data and Information to EOSDIS Nodes
Sub-Function 3.2 – Distribution of Data Among Active Archives
Sub-Function 3.3 – Interface with External Networks
Sub-Function 3.4 – Network/Communications Management and Services
Sub-Function 3.5 – System Configuration Management
Sub-Function 3.6 – System/Site/Elements Processing Assignment and Scheduling
Sub-Function 3.7 – System Performance, Fault, and Security Management

Sub-Function 3.8 – Accounting and Billing

 Table 3 – Illustrative Decomposition of a NASA System

 Approximately the same approach is followed for the functional decomposition of a
software system. Although there is considerable commentary on the matter of software
decomposition, software modules, and related notions, we offer here in Table 4 an
example of the functional decomposition of project management software, drawn from
the menu of familiar software (Microsoft Project) of this type.

 File (New, Open, Close, Save, Find File…)
 Edit (Cut, Copy, Paste, Clear, Delete Task…)
 View (Gantt, PERT, Resource Graph, Zoom…)
 Insert (Insert Task, Insert Column, Notes…)
 Format (Font, Timescale, Gantt Wizard…)
 Tools (Spelling, Change Time, Leveling…)
 Window (New, Hide, Split, Arrange All…)
 Help (Contents, Search, Preview, Cues…)

 Table 4 – Illustrative Decomposition of a Software System

 This table illustrates eight functions with the sub-functions shown parenthetically. The
functional decomposition does not include a definition of the way in which these
functions are to be instantiated. These functions and sub-functions are not the same as the
needed software modules, although at a later time they may (or may not) become the
“names” of the modules.

 It should be noted here that functional decomposition for software does not keep the
software engineer from instantiating the software with a data-based or even object-
oriented approach. Yet another way to think about this process is to recognize that every
software module, however constructed, has a purpose, and that purpose is its “function”.
The bottom line is that this unified approach, constructed in the manner described, does
not overly constrain the software architect to take an approach that he or she considers
less desirable. Separating the function from its method of instantiation is designed to
provide sufficient freedom in terms of software design.

Step 2 – Requirements Definition and Allocation

 Given the decomposition, we now wish to define and allocate requirements to all the
decomposed functions and sub-functions. We typically refer to the “requirements”
document that has been provided by the system sponsor in order to carry out this step. It
is clearly desirable to have at least one key requirement for each and every one of the
decomposed functions and sub-functions. Where this is not the case, it becomes a task of
the architecting team to “derive” a set of requirements from the information at hand.
Where this is not possible, a “TBD” status can be assigned, and updated at a later time.
The architecting team uses the best information it has at the time it is necessary to carry

out the architecting process. As usual, an incomplete set of requirements increases the
risk attendant to designing and building the system at hand.

Step 3 – Synthesis of Alternatives

 This “synthesis” step is critical under this unified architecting approach. One can
visualize this step as a table of rows and columns. The rows are the decomposed
functions and sub-functions. The columns are three alternative architectures, defined by:

a. a low cost approach to architecting the system
b. a knee-of-the-curve approach to architecting the system, and
c. a high-effectiveness approach to architecting the system

These 3 approaches establish what might be called the “low cost domain”, the “best value
domain” and the “high effectiveness” domain.

 Each cell of the table is filled out by the architecting team by selecting the way(s) in
which each sub-function is to be instantiated. Stated another way, each cell represents the
design approach selected by the team so as to satisfy the requirements for each and every
sub-function. It is at this point that the architecting team can select a hardware solution, a
software solution, or a combination solution, for each and every sub-function. The
precise nature of that solution is defined as completely as possible, given the aggregate
state of knowledge of the architecting team.

 We note again that in this “synthesis” step we have to come to terms with how to
approach the design of each function and sub-function. If part of the design is pure
software, the architect may select a data-driven, object-oriented, or any other approach
representing his or her best solution. It is believed that, as constructed here, the
“functional” approach and the “data-driven” approach are not ultimately in conflict.

Step 4 – Analysis of Alternatives

 The result of step 3 is to provide (at least) three alternative architectures, corresponding
to the low cost, best value, and high effectiveness domains. Unless otherwise constrained,
the team now analyzes and evaluates the effectiveness of each of the three alternatives
against a set of criteria. This analysis represents an effectiveness evaluation for the
overall system. Evaluation criteria are selected by the architecting team based upon the
best information provided by the system’s sponsor as well as the domain knowledge of
the architecting team. A set of twelve evaluation criteria is illustrated in Table 5 below.

 Criterion 1 – Reliability
 Criterion 2 – Maintainability
 Criterion 3 – Producability
 Criterion 4 – Electronic Security
 Criterion 5 – Physical Security
 Criterion 6 – Grade of Service

 Criterion 7 – Safety
 Criterion 8 – Capacity
 Criterion 9 – Sustainability
 Criterion 10 – Risk
 Criterion 11 – Human Factors
 Criterion 12 – Graceful Degradation

Table 5 – Illustrative Criteria for Evaluating the Effectiveness of Alternative
 Architectures

The results of the evaluation constitute a set of effectiveness measures. They are
combined by defining and using weighting factors, if the criteria are considered to have
different levels of importance. Standard “weighting and rating” schemes can be used to
calculate effectiveness levels [1]. The overall results can, at this point, be called a
complete effectiveness evaluation of the alternative architectures, using the best
knowledge available to the architecting team. In general, the architectures contain both
hardware and software, as well as positions and roles for the human element. This
“effectiveness” assessment leads immediately to the next step, and also represents the
“analysis” part of the “synthesis/analysis” duality.

Step 5 – Cost-Effectiveness View of Alternatives

 The results of step 4 provide measures of the effectiveness of the alternative
architectures. It is now necessary for the architecting team to calculate the overall life
cycle costs for these alternatives. Putting the effectiveness measures and costs in a
graphical display yields the cost-effectiveness view we are seeking. We are now able to
“see” our results in a form more conducive to decision-making. Our overall concept is
clearly one that can be characterized by a cost-effectiveness analysis of alternatives.

 Although it is easy to talk about calculating costs, the realities make it a difficult and
often arduous process. Bottoms-up approaches generally require lengthy data collections.
Top-down approaches, like parametric cost estimating, tend to have gaps and questions as
to the applicability of empirical data. Fortunately, we’ve been at cost estimating for a
long time and basically understand how to do it.

Step 6 - Creation of Additional Views

 Unlike some of the other approaches to architecting, we attempt now to create
additional views that provide as much quantitative insight as possible as to the features
(both positive and negative) of the alternatives that have been set forth. A candidate set of
such views is provided below in Table 6.

1. Requirements Satisfaction
2. Risk and Requirements
3. Interoperability
4. Cost by Function

5. Cost vs. Requirements
6. Sensitivity to Changes in Criteria Weights
7. Effectiveness vs, Risk
8. Effectiveness vs. Human Factors
9. Effectiveness vs. RMA
10. Effectiveness vs. Residual Performance Factors

 Table 6 – Other Possible Views [15] That Support the Architecture Selection

 The above list, however, does not at all preclude the use of more qualitative views that
help the team with respect to their evaluation of alternatives. This includes any and all of
the views suggested by the DoDAF (e.g., operational view, etc.) and other approaches
cited earlier.

Step 7 – Selection of Preferred Architecture

 An integral part of this unified approach to architecting is that the team creates several
(at least three) alternative architectures from which, ultimately, a preferred architecture
will be selected. Each of the alternatives is synthesized (designed) by formally creating
design alternatives for each and every sub-function of the system. These are then used to
create the low cost, best value, and high performance alternatives. Each alternative is then
characterized by measures of effectiveness and cost, as well as additional views that
create further qualitative and quantitative information. The architecting team, at that
point, has sufficient information to select a preferred architecture from among the
alternatives. This selection is presented to the customer as the preferred solution. If the
customer concurs, then the team enters the next phase, namely, subsystem design. If the
customer does not concur, specific non-concurrence issues are defined and considered in
detail.

Further Commentary on Views

 The notion of “views” appears to be straightforward but actually contains several
subtleties as well as unanswered questions. There is great value in addressing and
constructing views. But perhaps some additional factors need to be explored.

 Reasonable re-statements of the views of DoDAF are:

 an operational view is a view of the system architecture from an operational

perspective
 a system view is a view of the system architecture from a system perspective
 a technical view is a view of the system architecture from a technical perspective

These re-statements can be seen to imply that, first, a system architecture is constructed
and then three views are developed from that construction. This more-or-less separates
the notion of an architecture from the views of that architecture. The views provide
interesting and useful information about the architecture, but are distinctly not the

architecture itself. Further, if that is true, then what exactly is the architecture, and how is
it to be constructed?

 A contrary perspective is simply to accept that the three architectural views are, in the
aggregate, the architecture itself. This has some attraction, but also some serious
problems. Two brief examples follow that might bring out aspects of these problems:

(1) Suppose we are trying to define the architecture for an advanced radar system.
Try constructing an operational view, a systems view and a technical view. Do
these views capture the essence of the architecture of the radar?

(2) Suppose we are trying to define the architecture for the human body. Try
constructing an operational view, a systems view and a technical view. Do these
views capture the essence of the architecture of the human body?

Of course, embedded in the above questions is the possible answer – it depends upon
what we mean by an architecture. Go back to the two definitions presented in this paper
and see if that helps. In the light of the above, one might say that it is likely that certain
views of an architecture do not actually reveal the underlying architecture. Other views
might come closer, but still fall short. A snapshot of a house might tell us something
about its architecture, but not enough to reveal the essence of its full architecture.
Multiple snapshots add information, but might still fall short in important ways with
respect to revealing what it is that constitutes the architecture.

 Continuing on, yet another conclusion is as follows:

 A view, or set of views, might fall significantly short of revealing the method of

architecting

Stated another way, in this as well as many other real-world cases, the products (the
views) do not imply the process (the method of architecting). In various ways, perhaps
one should not have the expectation that the products of architecting should reveal the
process of architecting. But one might also believe that such a feature is highly desirable.
This feature is approached if each step in the process clearly produces products that are
the essential set of “views”.

 Finally, we complete this commentary regarding views by briefly examining the notion
of Architectural Descriptions (ADs). For this purpose, we note the existence of a standard
dealing with ADs of software-intensive systems [16]. This standard specifically
distinguishes between an architecture and an AD, as follows:

“An Architecture: The fundamental organization of a system, embodied in its
components, their relationships to each other and the environment, and the principles
governing its design and evolution”

“An Architectural Description (AD): A collection of products to document an
architecture”

One of our leading researchers into matters of architecting reiterates and emphasizes this
difference [13]. If this notion is applied to the DODAF construct, a conclusion might be
that although we have three “preferred” views of systems, we also have areas that require
further elucidation, such as:

 a substantive, repeatable and agreed-upon method for system architecting
 a more complete and agreed-upon definition of a system architecture
 inferring the precise nature of an architecture from the views of that architecture,

and
 a unified method for system and software architecting

It is believed that this paper sets forth a clear and definitive method of architecting both
systems and software. A companion suggestion involves a recommended definition of a
systems architecture and a set of relevant views.

Summary

 This paper presents a unified approach to systems and software architecting. Several of
the key points in the paper are cited below:

1. the architecting approach is based upon a cost-effectiveness assessment of
specific and well-defined alternatives

2. the approach leads to the selection of a preferred architecture, from among the
alternatives

3. broad domains that help in constructing architectural alternatives include low
cost, best value or knee-of-the-curve, and high effectiveness approaches

4. the overall approach leans heavily upon the need to functionally decompose the
system, whether the system is largely hardware, software, the human element, or
combinations thereof

5. the functional decomposition for software systems is a major part of the process,
in that it defines these key functions and sub-functions, but not how to instantiate
them. The functional decomposition leaves room for developing a module
hierarchy as well as “modules of solutions or of data whose further refinement
can proceed independently of other work” [11]

6. in general, there is not a forced one-to-one correspondence between the functional
decomposition hierarchy and the ultimately constructed sets of modules that
constitute the designed software system

7. this unified approach, whose first step is functional decomposition, does not
generally prevent the software architect from selecting data-based, object-
oriented, or other preferred methods as ways to instantiate the specified functions

8. the “synthesis” part of the architecting process specifically develops design
alternatives (including software modules where necessary) that become the basis
for the set of architectural alternatives

9. each step in the architecting process leads to a product, but the dominant products,
or views, deal with (a) functional decomposition, (b) synthesis, (c) analysis (of
alternatives), and (d) the cost-effectiveness “view”

10. study of the output “views” of the recommended process tends to define the
process itself, a quite desirable feature of an architecting approach

11. current approaches to architecting do not appear to embody the above feature
12. an architecture, hardware or software, is typically not fully defined by the views

of that architecture. For the recommended architecting process herein defined, it
is suggested that the key views (see ‘9’ above) actually define the critical (but not
all) aspects of the architecture.

References

1. H. Eisner, “Essentials of Project and Systems Engineering Management”, 3rd Edition,
2008, John Wiley, Hoboken, NJ
2. A. Sage and J. Palmer, “Software Systems Engineering”, 1990, John Wiley, Hoboken,
NJ
3. J. Marciniak and D. Reifer, “Software Acquisition Management”, 1990, John Wiley,
Hoboken, NJ
4. E. Rechtin, “Systems Architecting”, 1991, Prentice-Hall, Englewood Cliffs, NJ
5. E. Rechtin and M. Maier, “The Art of Systems Architecting”, 1997, CRC Press, Boca
Raton, FL
6. Department of Defense Architectural Framework (DoDAF), version 1.5, Volumes I, II
and III, 23 April 2007, U. S. Department of Defense
7. see www.zachmaninternational.com
8. G. Booch, “The Irrelevance of Architecture”, IEEE Software, IEEE Computer Society,
May/June 2007
9. R. Taylor, N. Medvidovic and E. Dashofy, “Software Architecture – Foundations,
Theory and Practice”, 2010, John Wiley, Hoboken, NJ
10. N. Wirth, (1995), “A Plea for Lean Software”, IEEE Computer Magazine (February):
64-68
11. F. Brooks, (1995), “The Mythical Man-Month”, Reading, MA: Addison Wesley
Longman
12. D. Parnas, “On the Criteria to Be Used in Decomposing Systems Into Modules”,
Communications of the ACM, 15, No. 12, December 1972, pp. 1053-1058
13. M. Maier, “System and Software Reconciliation”, Systems Engineering, Vol. 9,
Number 2, Summer 2006
14. Phase C/D Requirements Specification for the Earth Observing System Data and
Information System (EOSDIS) (1990) Greenbelt, MD: Goddard Space Flight Center
15. H. Eisner, “New Systems Architecture Views”, American Society for Engineering
Management (ASEM), 25th Annual Conference, October 20-23, 2004, Alexandria, VA
16. IEEE Standard 1471-2000, “IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems”, 2000

	Prev:
	Next:
	Close:
	First:

