MODULE I

BASIC ATTITUDE MECHANICS



IEULER ANGLES; EULER RATES |

-

Any rotation can be specified by 3 independent parameters.It is often convenient to use the so~
called FEULER ANGLES. Suppose the rotation in question transforms the right—handed orthogonal
triad of unit vectors {iz,1y,1,} into the right-handed triad {i¢,i,,i¢}. This can be broken down
into a sequence of three elementary rotations:—

(1) A counter—clockwise rotation about the z-axis through 2, which transforms ix into a unit
vector i,. The angle w is determined by the requirement that i, be perpendicular to the plane of
i, and ic. This yields a new triad {in,iz X in,iz}.

(2) A counter—clockwise rotation about the n—axis through ¢, which transforms i, into i;. This
yields a new triad {in,i¢ X in,ic}.

(3) A counter—clockwise rotation about the {(—axis through w, which transforms i, into ie. This
yields the triad {i¢, in,i¢}

The first rotation gives:—

in = cos iz +sin Qi

i; X i, = —sin Qiy + cos Qi (1)
i, =1,
The second rotation gives:—
i, =i,
ic X i, = cos ii, X i, +sinii, (2)
ic = —sin 4i; X ip + cos ¢,

The third rotation gives:—

ig = cos wip +sin wi¢ X in
ip = —sinwi, + coswi¢ X iy (3)
ic=i<
It follows that

li =ig - i = cos Q2cos w — sin {2sin wcos 7 )

lg =iy - iy = — cos {lsin w — sin 2 cos wcos 1

I3 =i - ic =sin Qsin ¢

my = iy i¢ = sin Qcos w + cos {sin wcos 1
mg = iy - iy = —sin sin w + cos {2 cos wcos ¢ (4)
mg = iy - i¢ = —cos (1sin 1
ny =1, i = sin wsin { -

ng =1, - i, = cos wsin ¢

ng =i, -ic = cos 1



Suppose that the Euler angles vary with time. Our next task is to express the components
we,wpn,andwe in terms of the Euler angles and their time-derivatives. We shall do this yia the

chain rule. We begin by noting the fact that

A . .
=% =sin t1p = 8in 1 COS w i¢ +sin isin wi,
N
Oi¢ e . C . . . . . .
5 = —cos i(iy X in) —sin 4i, = —i¢ X iy = —sin wic — cos wiy,
0
81( -0
Ow )
Moreover,
Oi¢ Oy

8in+ . {81( T }\
=cos w =~ +sin w{ == X ip + i x ==
o0 o0 o0 = "t a0
=coswizxin+sinw{—cosiin}
=cosw{sinwcosii5+coswcosii,,—sin ic}—sinwcos i{coswig—sinwin}

= CO0S 11y — COS WSIN 1 1¢

%=sinwﬁgxi =—sinw[(i xi)xi = si i
L
w )

We now use the fact that

d{ic}

dt

in combination with (5) to conclude that

. . . 01 di 01 . 0i

T d e Y ow

. . di
w,,=cos<ussz—sme
. L di
w§=smws1an+coswE
Similarly,
T SRR T
qt el Tech =N5e Y % Yo
so that

we =w + £ cos i. -
Notice that

we ¢ +wn1n+wclczﬂlz+gt‘ln+"‘“c-






[JACOBIAN ELLIPTIC FUNCTIONS ]

Consider the differential equation

dy? _ 2 2.2
(S} = @-vHu-¥y) (0<k<1)

Consider, first, the limiting case k=0:

y(t) d

= ___y_2 + ¢1 = arcsin(y(t)) + ¢1

VAR S

so that
y = sin(t — ¢;)

Consider, now, the limiting case k=1:

y(t)
t-—/—d—‘z——}-c —lln +c
/ {1-¥%) P2 1-y(b) '

so that
y = tanh(t — c;)
For0 <k« 1:

y(t)
dy

Y e e

The phase-plane diagram for (1) has the form
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Clearly, solutions to (1) are periodic and oscillate between the values -1 and +1. The period
of oscillation is 4K, where

-~

1
dy
K= / 7
| VAo 7
An expression of the form (7) is called a complete elliptic integral.

For each value 0 < k < 1 of the parameter k, the Jacobian Elliptic Functions sn(t,k), cn(t,k),
and dn(t,k) are defined as follows:

The function sn(t, k) is the periodic solution y(t) of (1) such that y(0) = 0 and {%} = +1.
t=0

cn?(t, k) = 1 — sn?(t, k) cn(0) = +1 (8)

dn®(t, k) = 1 — k?sn?(t, k) dn(0) = +1 (9)

In the limiting case k=0, cn(t,k) becomes cost, dn(t,k) — 1. In the limiting case k=1,
cn(t, k) — secht dn(t, k) — secht.

DERIVATIVES OF JACOBIAN ELLIPTIC FUNCTIONS
It follows from (1) that
d
a{sn(t, k)} = cn(t, k) dn(t, k) (10)

Differentiation of (8), (9), and the use of (10) then yields

d
a{cn(t, k)} = —sn(t, k) dn(t, k)
%{dn(t, k)} = —k2sn(t, k) ca(t, k)

The first graph shows values of the Jacobian Elliptic Functions for k=0.8. The corresponding
value of the quarter—period K is 1.9953, so the period is approximately equal to 8.

The second graph compares the functions sin(t) and sn(t.k) for k=0.6. The corresponding
value of K is 1.75075, so the period is approximately 7.

The third graph compares the functions tanh(t) and sn(t,k) for k=0.99. The corresponding
value of K is 3.3566, and the period is approximately 13.4264.
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|TORQUE-FREE MOTION |

The principles governing the three-dimensional motion of a rigid body are:~
the Principle of Linear Momentum,

mig =Y F (1)
and the Principle of Angular Momentum, in either the form

He =) Mg (2)
or

ﬁA = Z MA , (2’)

G being the center-of-mass of the body, and A any fixed point in space.
In terms of a coordinate system Gxyz fixed in the body , and one GXY?Z fixed in space, which
instantaneously coincides with Gxyz,

He = (Ho)axy: + 3 x He (3)

Thus, equation (2) may be written in component form as:—

I:]:Gx + waGz - wzHGy = Z Max
I;]:Gy + w,Haox — wiHg, = Z MGy
I;]:Gz + waGy - waGx = Z Mg,

PRINCIPAL AXES FORMULATION
If Gxyz are the principal axes of inertia of the body, so that I, =1, =1, =0, then

Hax = Liwx, Hoy = Iywy,Hg, = Lw,. Equation (2) may therefore be written in component
form as:-

Lo + (I — Tylwyw, = ) Max (4)
Ty + [Ix — Llwew, = > May (5)

Ly + [Iy — Ldwxwy = 3 Mg, - | (6)



Consider, now, the torque-free motion of a rigid body. If Gxyz are principal axes of inertia,

then equations (4)—(6) reduce to .
Ixwy + [I; — Iy|wyw, =0, (7)
Lywy + [Ix — I Jwxw, =0 (8)
and,
Lw, + [Iy — Lwxwy =0 9)

Moreover, angular momentum and rotational kinetic energy are conserved, i. e.,
ﬁc = [ wyi+ Iywyj—f—IZwZR = HK = const (10)
for some fixed direction K in space [the invariant line], and

H? = (Tawy)? + (Iywy)? + (Lw,)? = const (11)

2T ot = Le(w)® + Iy (wy)? + L (w,)? = const (12)

Suppose, now, that I, > I, > I,. Then

2L Tror — H? = I (Ix — I )w? + I,(Ix — I)w? = const (13)
H? - 2I,T. = LI, — Iz)wf, +I,(Ix — I,)w? = const (14)
so that
w2=R- Swﬁ (16)
where
po BT o LG -L) g AT o Lol)
L(Ix —1,) I (Ix — L) L(Ix — 1) L(Iy — 1)
It follows that
w2 =D*{P - QwZH{R — Sw?} (20)
where
D— Ii—L

© st



Also,

Sw? — Quw? =SP - QR. (18)
and
— Iy 2 '
SP = QR = o {H - T} 19)

Suppose SP — QR > 0. Then, wy oscillates between the values —1/ % and 1/ %, w, oscillates

between the values —VR and VR, and wy oscillates either between the values 1/ “SP —S QR and

VP or, between the values —+/P and -1/ SP—_SQ—E .

If QR — SP > 0. Then, wy oscillates between the values — | —g and 4/ g, wy oscillates between

QR - SP

the values —v/P and \/13, and w, oscillates either between the values Q

between the values —vP and —1/ Q—RS:—S-E .

and VP or,

A d
&
<




Suppose SP — QR > 0 Then (17) may be written as

(&R} o (B) @4} ()

R QR
L = — = —_— =
3 v/ Sp p = DVSP

It follows from (20) that
wy = Lisn(p(t — to), k)

Define

for some constant of integration to. It then follows from (15), (16}, that

w2 = P dn?(p(t — to), k) w? = Ren?(p(t — to), k)
In order to satisfy (8), take

wy = £vP dn(p(t — to), k) w; = FVRen(p(t — to), k)

that is, take opposite signs in the square roots.

Suppose SP — QR < 0 Then (17) may be written as

[l Ba}} el (R B}~ (3)-

It follows from (22) that

Define

wy = Lisn(p(t — tg), k)
for some constant of integration to. It then follows from (15), (16), that
w2 = Pecn?(p(t - to), k) w? = Rdn?*(p(t — tg), k)
In order to satisfy (8), take

wy = £VP en(p(t - to), k) w, = FVRdn(p(t — to), k)

that is, take opposite signs in the square roots.

(21)



EULER ANGLES; EULER RATES

In Rigid-Body Mechanics, the attitude (orientation) of a rigid body is space is often specified
by means of the Euler Angles relating an orthonormal frame { i, j, k } fixed in the body to an
orthonormal frame { I, J, K } fixed in space. In this context, it is standard to denote the Euler
angles by ¢, 0, and ¢. The angle 1 is the angle between the J-K and k—K planes, the angle ¢
is the angle between the k and K directions, ¢ is the angle between the k-K and j-k planes.
'In this notation, the unit vectors of the two triads are related as follows:—

= [cos ¥ cos ¢ — siny sin ¢ cos 9]1 + [sin ) cos ¢ + cos 1 sin ¢ cos O]J +singsinfK
= [~ cos ) sin ¢ — sin 1) cos ¢ cos A]I + [~ sin ) sin ¢ + cos 4 cos ¢ cos A]J + cos ¢psinf K
k = sinysin 61 — cos ¥ sin 8J + cos 6 K

The components of angular velocity are given in terms of the Euler rates, ¢, 8, ¢ by:—

= ¢sin¢sin9+9cos¢
= z,bcosqbsine —ésinqﬁ

wy =P cosh + ¢
The Euler rates are given in terms of the components of angular velocity by

[wx sin ¢ + wy cos @)
sin

¥ =

= wy cos ¢ — wy sin g

b = —wy sin ¢ cot @ — wy cospcotd + w,

By taking the K direction to be the (fixed) direction of the angular momentum vector Hg,
and using the fact that

K=sin ¢ sin § i+cos ¢ sin 8 j+cos 8 k
it follows that

I,wy = Hsingsind Iywy, = H cos¢sind Lw, = H cosf



Tw
9 —  Aad’ A
arccos{ H } .

¢ = arctan {Ix_w_x_}
Lywy

[Lew? + Lyw?]

Ve H{ [(Lxws)? + (Iywy)?] }




format long e;

Ix=5;

Iy=3;

1z=2;

Wx=.05;

Wy=6;

Wz=-.05;
D=Ix*(Wx"2)+Iy*(Wy " 2)+1Iz*(Wz"2);
T=0.5*D;
Q=Ix*Wx) "2+ (Iy*Wy) "2+(12*Wz) " 2;
H=sqrt(Q);

A=Ix*D-Q;

B=Q-Iy*D;

C=Q-Iz*D;

ifB>0

Bplus;

else

Bminus;

end

tmax={4*K)/P;
deltat=.005;
t={0:deltat:tmax;
nl=max(size(t));
x1=zeros(size(t));
x2=zeros(size(t));
x3=zeros(size(t)};
x4d=zeros(size(t));
x5=zeros(size(t));
g=zeros(size(t));
x6=zeros(size(t));

for j=1:n1

[al a2 a3]=ellipj(P*(t(j)-t0),m});
ifB>0

x1(j)=L*a3;

x2(j)=M*al,;

x3(j)=N*a2;

else

x1(j)=L*a2;

x2(j)=M*al,;

x3(j)=N*a3;

end

x5(j)=acos( (Iz*x3(j)) /H);
x6(j)=atan((Iy*x2(j))/ (Ix*x1(j)));

PROGRAM TFM.m

g(j)=H*((D-Iz*(x3(j)"2))/(Q-(12*x3(})) "2));

end

fori=2:nl
x4(i)=x4(i-1)+deltat*g(i-1};
end



ifWx >0
L=sqrt(C/(Ix*(Ix-1z)));
M=sart(A/ (Iy*(B-1y))
N=-sqrt(A/(Iz*(Ix-Iz}))
else
L=-sqrt(C/(Ix*(Ix-1z)));
M=sqre(A/(Iy* (Ix-Iy)));
N=sqrt(A/(Iz*(Ix-1z)));
end

b

P=sqrt((C*(Ix-1y))/ (Ix*Iy*1z));

m=(A*(Iy-Iz))/(C*(Ix-Iy));
K=ellipke(m);
delta=.00000001;
r=Wy/M;

n=30;

R=[1:1:n};
y=zeros(size(R)});
z=zeros(size(R));
w==zeros(size(R));
d=zeros(size(R));
ifr>0
y(1)=asin(r);
z(1)=K;

else

z(1)=asin(r);
y(1)=-K;

end

for k=2:n

if z2(k — 1) — y(k — 1) < delta
1=k-1;

break;

else

1=k;
w(k)=0.5%(y(k-1)+2z(k-1));
(i) =ellipj((k),m);
end

ifdk) >r
y(k)=y(k-1);
z(k)=w(k);

else

z(k)=z(k-1);
y(&)=w(k);

end

end

f=z(1);

SUBROUTINE Bplus.m



[s1 52 s3]=ellipj(f,m);

ifr>0

if r Wz/N Wx/L]== [s1 s2 s3]
t0=-f/P;

else

t0=(f-2*K) /P;

end

else

if [r Wz/N Wx/L]== [s1 s2 s3]
t0=-f/P;

else

t0=(f+2*K)/P;

end

end

if Wz <0
L=sqrt(C/(Ix*(Ix-12)));
M=sart(C/ (Iy*(Iy-12)));
N=-sqrt(A/(Iz*(Ix-1z)))
else
L=-sqrt(C/(Ix*(Ix-1z)));
M=sqrt(C/(Iy*(Iy-12)));
N=sqrt(A/(Iz*(Ix-1z)));

end

P=sqrt((A*(ly-Iz)) /(Ix*Iy*1z));
m=(C*(Tx-Ty)) /(A*(Iy-12));
K=ellipke(m);

delta=.00000001;

r=Wy/M;

n=30;

R=[1:1m];

y=zeros(size(R));
z=zeros(size(R));
w=zeros(size(R});
d=zeros(size(R));

ifr>0

y(1)=asin(r);

z2(1)=K;

else

z(1)=asin(r);

y(1)=-K;

end

3

SUBROUTINE Bminus.m



for k=2:n

ifz(k ~ 1) —y(k — 1) < delta
I=k-1;

break;

else

1=k;
w(k)=0.5%(y(k-1)+z(k-1));
d(k)=ellipj (w(k),m);

end

ifd(k) >r

y(k)=y(k-1);

z(k)=w(k);

else

z(k)=z(k-1);

y{k)=w(k);

end

end

f=z(1);

[s1 s2 s3]=ellipj(f,m)};
ifr>0

if [r Wx/L Wz/N]== [s1 s2 s3]
t0=-f/P;

else

t0=(f-2*K)/P;

end

else

if [r Wx/L Wz/N]==[s1 s2 s3]
t0=-f/P;

else

t0=(f+2*K)/P;

end

end



ITORQUE—FREE MOTION OF A SYMMETRICAL BODY]

Consider the torque-free motion of a rigid body. If Gxyz are principal axes of inertia, then
governing equations are

Ik + [I; — Iywyw, =0, (1)

Lywy + [Ix — Ljwxw, =0 (2)
and,

Lw, + [Iy — Ijwxwy, =0 (3)

Moreover, angular momentum and rotational kinetic energy are conserved, i. e.,
Hg = Liw, i+ Iywyj+Izwzf< = HK = const (4)
for some fixed direction K in space [the invariant line], and

H? = (TLawx)? + (Lywy)? + (Iw,)? = const (5)

2T ot = Ix(wx)2 + Iy(cuy)2 + Iz(wz)2 = const (6)

SYMMETRICAL BODY
Suppose the body has an axis of symmetry so that I, = I, # I,. Equations (1)—(3) become

Lewx + [I; — Idwyw, =0 (7)
Lewy + [Ix — IJwxw, =0 (8)
and
Iz"")z =0 (9)
Thus, w, = n (const), and
x — Iz 2 .
wx-i—{n[II ]}wxzwx-’r—qzwxzo (10)



It follows from (10), (11) that

wx = Acosqt + Bsingt wy = Bcosqt — Asingt (12)
for some constants A and B. It follows from (5), (6), (12) that
1 1 2
2 2 _ A2 2 _ 2] _ 2 _
wy +wy, =A°+B = I—;{QTM —Ln } = I—g{H — (In) } = const (13)
& = wié + nk H = (Law)é+ (Ln)k
. . . , B
é=cos (qt — €) i-sin (qt — €) ] wy =4/ (A% 4+ B?) Sine = ——0-7e -
(474 57

It follows from the foregoing that the vectors & and H have constant magnitudes and lie in
the &k plane. The vector & makes a constant angle v with the (rotating) k—direction, while
the vector k makes a constant angle § with the constant vector H [ K-direction ].

_wl _ wal - I_x
tan*y-» " tanf = In = (Iz>tan'y

In general, the components of angular velocity are given in terms of the Euler rates, ¥, 6, ¢
by:-

wx = ¥ sin ¢sin b + 6 cos ¢
Wy =1 cospsiné — fsin ¢

wy = cosf + ¢

In this case 8 = 0, so that

Wy = ¢sin¢sin0 = wiey

wy = cos psind = wre,

n=1cosbh+¢
Thus,
UJl Izn 5 Ix - Iz )
— — =1n - t0 = n
sin 8 [Ix cot 9] $=n-wico { I }
Lé

V= (Ix — I,] cos 8



SPACE CONE AND BODY CONE

The angular velocity vector & is constant in magnitude and makes constant angles with"both
the (fixed-in—the-body) k-direction and the (fixed~in-space) K- direction. As the motion
unfolds, the vector & sweeps out cones about each of these directions, the body cone and space
cone, respectively.

ROD-LIKE BODY (Ix > Iz)

For a rodlike body, 6 > v and so the space cone is exterior to the body cone. Moreover. ¢ and
¢ have the same signs (direct precession).

DISK-LIKE BODY (Ix < IZ>

For a disklike body, & < 7 and so the space cone is interior to the body cone. Moreover, ¥ and
¢ have opposite signs (retrogmde precessz'on).

Body cone







el

W

Space cone




[THE SPINNING TOP ]

The heavy spinning top shown is a body with an axis of symmetry which is mounted on a ball—
and-socket joint at O. Its moment of inertia about its axis of symmetry z is I,, its moment of

inertia about any axis through O perpendicular to the z-axis is I, the distance from O to the
center of mass G is d.

The rotating frame Oxyz is defined by requiring the x-axis to lie normal to the z-Z plane. [These
axes are not fixed in the body, but always coincide with principal axes of inertia.] The ANGLE
OF PRECESSION, ¢, is defined as the angle between the X-Z and z—Z planes. The ANGLE OF
NUTATION, 8, is the angle between the axis of symmetry and the vertical, and the ANGLE OF
SPIN, i is the angle of rotation of the top about its axis of symmetry.

K =sinfj+cosfk
The components of the angular velocity (I = §1+d K of the frame Oxyz are therefore

Q. =9 Qyzq:‘usiné Q, = ¢ cosh

The components of the angular velocity & = 1+¢ K + 1 k of the top are

wy =6 wy=<§sin6 Wy = ¢ cosf +
The equation of motion is
(ﬁo)oxyz = (ﬁo)oxyz +§x ﬁo = ZMO =dk x {-Mg K} (1)
Thus,

I8 + L[ + ¢ cos6]¢ sinf — I,é? sinfcosd = Mgd sin 8
Ixa-g{qb sinf} + Ix0¢ cos — 1,001 + ¢ cos§] =0

Iz%{vjz + ¢ cosf} =0
The third of these implies that

wy =1 + ¢ cos§ = n (const) (2)



The energy of the spinning top is conserved. The kinetic energy is

1 1 . s
T = o {Telwg + W] + Lwi } = 5 {Ik(6® + (#5in6)*] + Ln*}

The potential energy is

V = Mgdcos ¥
-Thus,the energy identity takes the form

1,.[6% + (#sin6)?] + 2Mgd cos § = 2E — I,n?
It follows from (1) that

& e

K- (ﬁo)oxyz = (

Thus,

~ —

K-Ho = Ixwy sin 8 + L,w, cos 9 = Iepsin®@ + Lncos§ = Hy (const)

Combining this with (3) yields

[Hz —I,ncos 9] 2

L% +
* I« sin® 6

+ 2Mgd cos § = 2E — I,n®

Define constants

1

T

_ 2Mgd Hy
I , I

a= —[2E - ,n?] w
Then,

62 sin? 4 + [k — pcos 9]2 + wcosfsin? 8 = asin? 8
Make the change of variable
u=-cosf 4= —fsind

to arrive at

together with



Consider, now, the cubic expression f(u). For the system considered, 0 < 8 < -72[, so a > 0. Thus,

f(:tl)=—[k—p]2§0 'f(oo)zoo
One possible solution of (5) is u =1, k = p. For solutions to (5) with u # 1 to exist, the cubic
expression f(u) must be positive in some range 0 < up < u < u; < 1, and the cubic must possess
three real roots 0 < 1y <13 <1< u3.
f(u) = w[u - ug] [u - ul] [u — u3]

Let

o=+[u—uy u =200
Then
_ w
0’2 = Z[ul — Uz — 0’2] [U3 — Ua —-0'2]
Now, define
(ol [u1 - 112] 1
= ——— k=4 —— = 2./ —
Vu; — up [us — uyg] A 2 wluz — uo]
Then,
I'?=X%[1-T?][1 - K17
and
T =sn(A(t - to), k)
Define
8, = arccos(u;) 82 = arccos(us)
Then

cos § = cos b + [cos b1 — cos B2]sn® (A(t — to), k)




