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1. Consider a negative unity-feedback control system with the open-loop transfer function

=K(s+2lgs+5)'

G(s)

Determine the range of the constant K, such that the 5% settling-time is less than 3 seconds.  (25pts)

2. Consider the following feedback control system.

Determine the simplest controller D(s) amongst P, I, or PI controllers, such that the maximum percent-
overshoot is less than 10%, the 5% settling-time is less than 1s, and the steady-state error is zero for a
step input. (25pts)

3. Consider the negative-feedback control-system with the following open-loop transfer-function. Construct
the root-locus diagram. Determine all the important features like asymptotes, break-away and/or break-in
points, imaginary-axis crossings, angles of departure and/or arrival.

s*+4s+5
s(s+ 10)(s? + 25+ 2)

G(s)=K

(30pts)

4. Sketch the root-locus diagram for the following control system. (20pts)

s+ K

s—1
s2+1
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1. Consider a negative unity-feedback control system with the open-loop transfer function

(s+2)(s+5).

G(s)=K 2

Determine the range of the constant K, such that the 5% settling-time is less than 3 seconds.

Solution: Since the 5% settling time t50;, = (3/0,); we have

3
ts%s = ;; < 37

0o > 1, or the poles need to be on the left-hand-side of the R[s] = —0, = o = —1 vertical line. One
way to determine the conditions for the poles to be on the left-hand-side of a vertical line is to use
the Routh-Hurwitz’s Table after shifting the vertical line from the o = 0 line to the desired line.

The closed-loop poles are determined from the factors of the characteristic polynomial or the de-
nominator of the closed-loop transfer function. In our case, the characteristic equation is

(s+2)(s+5) _ 824+ K(s+2)(s + 5)

1+G(s) =1+ K o 3

=0,
and the characteristic polynomial becomes
g (s) = $* + K (s + 2)(s + 5).

If we use the Routh-Hurwitz’s Table on this polynomial, we would determine the conditions for the
poles to be on the left-hand-side of the o = 0 vertical line. To determine the conditions for the
left-hand-side of the o = —1 line, we need to shift the characteristic polynomial, such that

@e(s—1)=(s—12+K((s —1)+2)((s~ 1) +5)
= (K +1)s® + (5K — 2)s + (4K +1).

With the new polynomial, the Routh-Hurwitz’s Table becomes as given below.

82 K+1 4K +1
s 5K -2
1 4K +1

Applying the Routh-Hurwitz’s criterion on the new polynomial gives the conditions for the left-hand-
side of the o = ~1 line. The s-term gives

K+1>0, or K> -1.
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- The s-term gives
) 5K —2>0, or K >04.

The 1-term gives
4K +1>0, or K > —0.25.

Therefore, from the intersection of all the regions, we get

K> 04

2. Consider the following feedback control system.

Determine the simplest controller D(s) amongst P, I, or PI controllers, such that the maximum percent-
overshoot is less than 10%, the 5% settling-time is less than 1s, and the steady-state error is zero for a
step input. ~

Solution: The performance requirements are listed below, where

66) = ==,
and k
D(S) - KP)
K
D(S) - ";'a
or
Kj s+ Ki/Kp



EE 231

Exam#2 Solutions

Spring 2008

3/9

Given Requirements

General System Restrictions

Specific System Restrictions

K
D) ==F
- ri or ‘
3;1;; ?::le;)afty state error is zero for a G(s)D(s) has a pole at 0.
. Ki/K
D(s) = KPLSL"E-
— 22
(V=) My
The maximum percent overshoot is or ¢> 059
less than 10%. lln(MPgiven)' e
2 2’
\/(hl(MPgiven )) + (7r)
;— < t5%~’glven 4
The 5% settling-time is less than or ° S 3
1 second. 3 o 2 9
Oo > .
ts%églven

In order words, from the steady-state error requirement, we conclude that the P controller won’t
work. The s-plane region for the dominant closed-loop poles from the inequalities, { > 0.59 or
a < cos~1(¢) = 53.84° and 0, > 3 or 0 < —3 is given in the following figure.

53.84°

Jw s-plane

The next simpler controller is the I controller. However, when we have

2

D(s)G(s) = Klm,
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~> the root-locus diagram doesn’t go through the desired region as we can see from the following sketch.

With the PI controller, we have an extra zero to pull the root-locus branches towards the desired

region, where
2(8 + K]/KP)

D(s)G(s) = Kp s

Since a lot of choices for the zero would work, one possible choice is K;/Kp = 4. For that choice,
the radius is r = /(=4 — 0)(—4 — (~1)) = V12, and the intersection of the root-locus branch and,
the {o=—3} line is at s = —3 + j+/11. The gain at s = —3 £ jV/11 can be determined from the
magnitude condition, such that

} 2(s+4)
= P -
s=—3+jV11 3(3 + 1)

=1,
g=—344v11

) |
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- or Kp = 2.5. Therefore, any Kp > 2.5 satisfies the requirements. By the way, we can also check the
‘ 7 { @<53.84° } requirement, where o = tan™! (\/1_1_ /3) = 47.87°.

One possible choice is Kp = 3 > 2.5 and K; = 4Kp = 12. Therefore, the simplest controller is a PI
controller, and one such controller is

D(s) =3+lsg.

The actual condition satisfying the { 6<—3 } requirement is K; > 3(Kp — 1).

3. Consider the negative-feedback control-system with the following open-loop transfer-function. Construct

the root-locus diagram. Determine all the important features like asymptotes, break-away and/or break-in
points, imaginary-axis crossings, angles of departure and/or arrival.

K 244545
U s(s+10)(s2 4+ 25 +2)°

G(s)

Solution: First, we sketch the pole-zero locations and the real-axis portion of the root-locus diagram.
Then, we decide the important features to be determined.

. Need to determine: jw

,»'\w)

e Asymptotes,

x
e Break-away point, and ' -+ <

e Angles of departure and arrival.

Asymptotes

Real-Axis Crossing: o, = M”_’
n-m

The real-axis crossing of the asymptotes is at
oo mipim s _ ((C10)+(1+5)+(=1-5)+(0) = (=2+5) +(=2-4)) _
. =

n—m = 4-2 =4

Real-Axis Angles: 0, = £(2k + 1)w/(n —m)
The angles that the asymptotes make with the real axis are determined from

0 = T(2k+Ur _ £(2k+L)m L7
7 n—-m 4-2 T T2

Break-Away Point: dK/ds =0
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From the characteristic equation,

14+ G(s) =0,
s2+4s+5
I+ Ks(s+ 10)(sZ+25+2) 0
and
K= s(s +10)(s® + 25 +2)
8244545 '
Therefore,

dK _ 2(s®+12s* + 585 + 1245 + 110s + 50)
ds (82 + 45 + 5)2
and for dK/ds = 0, the equation

s5 4+ 12s% +58s% + 12462 +110s +50 =0

gives s = —2.9753 and two sets of complex poles. So, the only break-away point is at s =
—2.9753.

Angles of Departure: > £¢) = +(2k+ 1)7

The angles of departure from complex open-loop poles are determined from the angular condi-
tions about the open-loop poles. Therefore, the angular condition about s = —1 + j1 is

— 4(s~(-10)) + £L(s — (=2 + 1)) + L(s — (-2 = j1))
— 4(s—(=1+371)) — £(s = (=1 —j1)) — £(s — (0)) = 180° + k360°,

L @-O L - (= (=)
o ((—1) = (—m)) +tan ((—1) = (—2)) +tan ((—1) = (—2))
(@)= (=1) G D=0 oo e
— 84ep — tan™? (——(_1) —~ (_1)> —tan~! (-——(_1) — (0)) = 180° + k360°,
or .
—6.34° + 0° + 63.435° — f40p — 90° — 135° = 180° + k360°.
As a result, :
Baep = 12.095°,

Angles of Arrival: ) L0 = +(2k+ 1)m

The angles of arrival to complex open-loop zeros are determined from the angular conditions
about the open-loop zeros. Therefore, the angular condition about s = —2 + j1 is

—£(s— (-10)) + £L(s — (-2+ j1)) + £L(s — (-2 — j1))
—L(s— (=1+41)) — £L(s = (-1 — 51)) — £(s — (0)) = 180° + k360°,

e (1 g)m)) ot ™ (7 )
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, or
’) —7.125° 4 05y + 90° — 180° — 116.565° — 153.435° = 180° + k£360°.
As a result, » e
Oarr = —172.875°.

With the features determined, we can now sketch the root-locus diagram.

Jw

Barr = —172.875°_ __ Odep = 12.095°

]
|
N
S ,
R\ -~
| r@ i
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-10 -4 \o 4 i1 o
|
|
|
|
I
4. Sketch the root-locus diagram for the following control system.
T K Y
s+ K
s—1
a2 +1

Solution: The sketch of the location of the closed-loop poles is the root-locus diagram. However, in this
case the open-loop gain of the system is

G(s)H(s) = (sf K) (:2111> e +Kf(fs)(_s2lzr D’

where the root-locus variable K is not a multiplicative coefficient of the open-loop gain. So, we need
to convert the problem into the conventional form while preserving the location of the closed-loop
poles the same. The closed-loop poles are obtained from the characteristic equation, where

1+ G(s)H(s) =
D




o
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or

K(s-1)
G+ K)(&@ 1)
(s+ K)(s2+1)+ K.(s -1

(s+ K)(s2+1)

1+

=0,

=0,

(s+K)s?+1)+K(s—1) =0,
S+ Ks?+Ks+s5=0.

We need to regroup the characteristic equation, so that the characteristic equation is in the form

n(s) _
1+Kﬁ =0,

for some polynomials n(s) and d(s). So,
S+ Ks?+Ks+s=0,
(s* +5)+ K(s*+5) =0,

(] +38)+ K(s?+5s)

=0
(83 +s) ’
2 +s
1+ K =0.
+ $2+s
Therefore, the new open-loop gain ,
s+s  _s(s+1)  _ s+1

G'(s)H'(s) =K

s+s s(s2+1) s2+1

generates the same closed-loop poles as the original open-loop gain, but the open-loop gain G'(s)H'(s)
of the new system is in the usual form for the generation of the root-locus diagram. In other words,
the locations of the closed-loop poles based on the open-loop gains G(s)H(s) and G'(s)H'(s) are
identical, however we can use the regular root-locus drawing techniques on the primed system.

‘We observe that we have the two-pole one-zero case, where the portion of the root-locus diagram
outside of the real axis is on a circle with the center at the zero,

center = z = —1,

and the radius that is the geometric mean of the distances of the poles from the zero,

radius = 1/ (p1 — 2) (2 ~ 2) = /() = (=1)) ((=9) - (-1)) = V2.

Therefore,
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Arc of a circle with
center = —1
radius = v2 -*
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