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1. The following requirements are given for a second-order system that is described by the transfer function 
Y (s)/U(s) = w:/(s2 + 2(wns + w;). 

Maximum percent overshoot: 5% 5 Mp < 15%. 
Peak time: t p  5 1 s. 

2% settling time: t2%, 5 2s. 

(a) Describe and sketch the s-plane regions of the pole locations satisfying the requirements. (15pts) 
(b) Determine the largest possible rise time of a system with the poles satisfying the requirements. 

(10pts) 

2. Consider the following feedback control system. 

Design a proportional-integral (PI) controller 

such that the 2% settling-time is less than 2 seconds, and the steady-state error for the unit-ramp input 
e(m)  = (112). (25pt,s) 

3. Consider the following feedback control system with the reference input r and the disturba,nce input d. 

For the case when 

design a minimal-order controller, such that the output tracks the reference input that has the laplace 
transform 

with zero steady-state error, and a step disturbance is rejected a t  the output. 

1 



4. Consider a negative unity-feedback control system with the open-loop transfer function 

Construct the root-locus diagram. Determine all the important necessary features like asymptotes, break- 
away and/or break-in points, imaginary-axis crossings, and angle of arrivals and departures. (25pts) 
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1. The following requirements are given for a second-order system that is described by the transfer function 
Y ( s ) / U ( s )  = w i / ( s 2  + 2<w,s + w i ) .  

Maximum percent overshoot: 5% '0 Mp I 15%. 
Peak time: tp 5 1 s. 

2% settling time: t2%s I 2  s. 

(a) Describe and sketch the s-plane regions of the pole locations satisfying the requirements. 

Solution: 

The shaded region describes the region specified by the given requirements. 

1 

Given Specifications 

5% 5 Mp 5 15%. 

t ,  1 1 s. 

tz%, 1 2s. 

System Constraints 

0.05 < c - ( ' ' ~ ) ~  1 0.15, 

1 ln(0.15)l 

Jm 
I 140.05) I 

l c l  J-' 
or 

0.51 < ( 5 0.69; 

since Mp = e-(~~m)r, and 

c = ~ l n ( ~ p ) t /  Jm. 
7r 
- 5 1, 
wd 

or 

Wd 2 . ~ / 1 ;  

since t, = 7r/wd. 

4 
- 1 2 ,  
go 

or 
a0 1 2; 

since t2%., = 4/g0. 

Geometrical Representations 

cos-'(0.69) 5 a 5 cos-'(0.51) 

or 
46.36' 5 cr 5 58.87", 

where a = cos-'(c) is the angle 
measured from the negative real 
axis. 

Iwl 2 n x 3.14, 

since the poles are at  
S = -uo * jwd 

a 5 -2, 

since the poles are a t  
S = -uo * jwd 
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(b) Determine the largest possible rise time of a system with the poles satisfying the requirements. 

Solution: The rise time of the system is given by 

The largest rise time is when we have the largest (n - cos-I([)) or the smallest cos-l([) and 
the smallest wd. From the shaded region of the sketch in the previous part, we realize that the 
smallest wd is when wd = n x 3.14 and the smallest cos-l(<) is when cos-l([). = cos-l(0.69) = 
46.36" = 0.2576~) which is at the intersection of the radial line with the angle of 46.36' with 
respect to the negative real axis and the horizontal line at w = 3.14. Therefore, 

or the largest possible rise time of the system is 0.74s. 

2. Consider the following feedback control system. 

Design a proportional-integral (PI) controller 

such that the 2% settling-time is less than 2 seconds, and the steady-state error for the unit-ramp input 
e (w)  = (112). 
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Solution: Since the open-loop gain of the system is 

the system is type-1, and we can get a constant steady-state error for a ramp input. The 2% 
settling-time requirement gives us the restriction such that 

or CT, > 2. In other words, the real part of the dominant complex closed-loop poles or the dominant 
real pole needs to be less than -2. In the PI  design, we have the choice of a zero and the loop gain. 
Since we have three open-loop gain poles at s = 0, -1, and -5, as well as a zero at s = - K r / K p ;  
we get the following possible root-locus diagrams. 

(a)  -Kr/Kp = 0 (b) -1 < - K I / K P  < 0 (c )  - K I / K P  = -1 

In case (a), the system is no longer type-1. In case (b), the dominant closed-loop real pole is greater 
than -1. In the cases (d)-(f), the dominant poles all have real parts greater than -2. So the only 
good option is to cancel the pole at -1 as in the case (c). In other words, 

4 A jw 

satisfies the settling-time requirement for the values of Kp after the root-locus branch crosses s = -2. 
When s = -2, from the magnitude condition we have 

* 
u - 5 -1 

v 

or Kp = 6. So, as long as we choose Kp 2 6, we satisfy the settling-time requirement. 

- - .- * - - .. 
u -5 

The steady-state error for the unit-ramp input is e(m) = (l/K,), where 

(e) -Kr/Kp = -5 (f) -Kr/Kp < -5 

1 
K, = lim sD(s)G(s) = lim sKp - - KP - 

s-ro s - ro  s ( s+5)  5 ' 
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Since we need e ( m )  = (1/2), 

or K p  = 10 will satisfy the steady-state error requirement as well as the settling-time requirement. 
Therefore, 

s + l  D(s )  = lo-, 
S 

3. Consider the following feedback control system with the reference input r and the disturbance input d. 

For the case when 

design a minimal-order controller, such that the output tracks the reference input that has the laplace 
transform 

with zero steady-state error, and a step disturbance is rejected at the output. 

Solution: In order to have a zero steady-state error for any reference input and to reject a disturbance 
signal at  the output, we need to match the non-asymptotically stable poles of the input and the 
disturbance in the open-loop gain of the system. In the case of the reference input, we need to have 
poles at s = fj2; since the pole at s = -1 of R ( s )  is asymptotically stable, and its contribution 
will disappear on its own at steady state. To reject a step disturbance, we also need to match the 
disturbance pole at s = 0, or the system has to be of type-1. With these choices, the open-loop gain 

where 1 

for some D1(s) .  Since there is no other explicit requirement, we only need to ensure stability by a 
proper and simple choice of Dt(s) .  

The simplest choice is D'(s) = K for a constant K. We may use a number of methods to check the 
stability of the system for this choice, but a rough sketch of the root-locus, as shown below, is simple 
enough to see the location of the closed-loop poles. 
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As we observe from the root-locus diagram, there is no value of K that would result in a stable 
closed-loop system; mainly because the asymptote angles are 0, = *6O0, 180°, and there are poles 
on the imaginary axis. 

In order to have the asymptote intersection and the angles stay inside the left-half plane, we need 
to have zeros in D1(s). Since we are placing three poles, we may have up to three zeros in D1(s). 
With only one zero, we will be able to have the asymptote angle as 0, = f 90'. We need to make 
sure that the asymptote intersection is on the left-half plane. For 

D1(s) = K (s - a), 

the asymptote intersection 

Cr=l Pi - Czn=, zi - - ((-8) + (0) + (j2) + (-j2)) - ( ( a )  + ( -5) )  -a - 3 
a(& = - - 

n - m  4 - 1  3 ' 

where Cpi and Czi are the sums of the pole and zero locations, respectively. As long as a > -3, 
we get a, < 0, and the complex poles will go towards the asymptotically stable region. However, if 
a > 0; this time the pole at s = 0 will go towards the zero at s = -a, and the system will still be 
unstable. So, we need to choose -3 < a < 0 and K >> 0. (For small K > 0, there might be a region 
of the root-locus branch that is still in the unstable region.) 

Therefore, one possible simplest controller is 

where -3 < a < 0 and K >> 0. 

4. Consider a negative unity-feedback control system with the open-loop transfer function 

Construct the root-locus diagram. Determine all the important necessary features like asymptotes, break- 
away and/or break-in points, imaginary-axis crossings, and angle of arrivals and departures. 
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Solution: First, we sketch the pole-zero locations and the real-axis portion of the root-locus diagram. 
Then, we decide the important features to be determined. 

Need t o  determine: 

Break-in points, and 

Imaginary-axis crossings. 
Double-Zero 

i 
There is only one asymptote, since two out of the three 
poles will go towards the double zero. The initial break- 
away from the triple poles at s = 0 will be at f 60' and ~ ~ i ~ l ~ - p o l e  -" 

180°, since they will leave the real axis equally apart and 
one has to leave at 180'. 

Break-in Point: dK/ds = 0 

From the characteristic equation, 
1 + G(s) = 0, 

and 

Therefore, 

and for dK/ds = 0, the equation 

gives s = -6, s = -2, s = 0, and s = 0. Since the double s = 0 location is the initial break-away, 
and the s = -2 location is due to the double zero, the break-in point is at s = -6. 

Imaginary-Axis Crossings: Routh-Hurwitz Table 

The imaginary axis crossings can be determined from the Routh-Hurwitz table. The character- 
istic equation from 

The Routh-Hurwitz table for this characteristic equation is given below. 
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The imaginary-axis crossings will correspond to the values of K that would make a row of all 
zeros on the table. When K = 0, the s2-row and the 1-row become all zeros, because there 
are multiple imaginary-axis crossings at the start of the root-locus diagram. The only other 
candidate is the s-row. The s-row is all zero, when K = 1. For this value of K, we get a factor 
of the characteristic polynomial from the upper or the s2-row. So, 

( K S ~  t 4K)K=1 = s2 + 4 = 0, 

or s = f j2. Therefore, the imaginary-axis crossings are at s = f j2. 

With the features determined, we can now sketch the root-locus diagram. 


