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1. Consider a negative unity-feedback control system with the open-loop transfer function

100

Glo) = Sots+ )"

Determine the output steady-state error e(oco) = y(oo) — r(o0), where y is the output and r is the
reference input, such that »(t) = 1 4+ ¢ + at? for ¢ > 0. (10pts)

2. Consider the following control system.
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Determine the range of the constant K, such that the 2% settling-time is less than 4 seconds. (20pts)

3. Consider the following feedback control system.

1
(st 1)(s+5)

f
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~(—+) D(s)

Consider a proportional-integral (PI) controller

Dils)= K % = 53“%&

Determine the constants Kp and K, such that the closed-loop system has sustained oscillations at
a frequency of 2rad/s. (20pts)

4. First sketch the root-locus diagram for the following control system. Then from the root-locus
diagram, determine the value of K such that the closed-loop poles have a damping constant of v/2/2.
(20pts)




5. For the following feedback control system, construet the root-locus diagram for positive values of K.
Determine all the important features like asymptotes, break-away and/or break-in points, imaginary-
axis crossings, angles of departure and/or arrival. (30pts)
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l. Consider a negative unity-feedback control system with the open-loop transfer function

100

Gle) = s(0.1s +1)°

Determine the output steady-state error e(oo) = y(o0) — r(oc), where y is the output and r is the
reference input, such that r(t) = 1 + ¢ + at* for ¢ > 0.

Solution: From the open-loop gain of the system, we determine that the system is of type-1.
Therefore, the steady-state error

0, if r is a step input;
e(o0) = K 1/K,, if ris the unit-ramp input;
00, if r is a positive parabolic input.

Here, K, is the velocity steady-state error coefficient, where

, L 00
K-u — EI_I;%SG(S) = ij_l’}"[l}Sm = IUU

Since the system is linear; when r(t) = 1+t + at?, we get
0+ 1/100 + o0, ifa > 0;

e(o0) = < 0+ 1/100, if a =0;
0+ 1/100 — o0, ifa <0

or
o, ifa>0;
e(o0) =< 0.01, ifa=0;
—o0, ifa <0
2. Consider the following control system.
i -_I',-_"‘t:.\ ! l . _y_'
‘\[. / K(s+ﬁ){s+ 13)

I e
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Determine the range of the constant K, such that the 2% settling-time is less than 4 seconds.
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Solution: Since the 2% settling time toy, = (4/0,); we have

4
lygs = — < 4
2%s o )
g, > 1, or the poles need to be on the left-hand-side of the R[s| = —o, = o0 = —1 vertical line.

One way to determine the conditions for the poles to be on the left-hand-side of a vertical line
is to use the Routh-Hurwitz's Table after shifting the vertical line from the o = 0 line to the
desired line.

The closed-loop poles are determined from the factors of the characteristic polynomial or the
denominator of the closed-loop transfer function. In our case, the characteristic equation is

o . 1 1\ _s(s+6)(s+13) + K _
1 +G(3)H(6) =]~} (R (3 + 6)(3 + 13)) (3) B 3(3+ 6)(9 + 13) . U‘

and the characteristic polynomial becomes

qe(s) = s(s +6)(s + 13) + K.

If we use the Routh-Hurwitz’s Table on this polynomial, we would determine the conditions for
the poles to be on the left-hand-side of the o = 0 vertical line. To determine the conditions for
the left-hand-side of the o = —1 line, we need to shift the characteristic polynomial, such that

ge(s —1) = (s — 1)((s~ 1)+6)((s—1)+ 13) + K
=(s—1)(s+5)(s+12)+ K
= 53 + 1652 + 43s + (K — 60).

With the new polynomial, the Routh-Hurwitz's Table becomes as given below.

s 1 43

s 16 K - 60

(16)(43) — (1)(X — 60)
16

1 K — 60

Applying the Routh-Hurwitz's criterion on the new polynomial gives the conditions for the
left-hand-side of the ¢ = —1 line. The s-term gives

(16)(43) — (1)(K — 60)

6 >0,
or
K < 748.
The 1-term gives
K —60 > 0,
or
K > 60.

Therefore, from the intersection of the two regions, we get

60 < K < T48.
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3. Consider the following feedback control system.

T T;‘_ ’ R 1 - E
ﬂ}r/ P Gt +5) I

Consider a proportional-integral (PI) controller

D(s):Ker&:M.

S b

Determine the constants Kp and K, such that the closed-loop system has sustained oscillations at
a frequency of 2rad/s.

Solution: For sustained oscillations, we need to choose the constants, such that there are distinct
poles on the imaginary axis and no pole on the right-half plane. The candidates for such a
choice are obtained by generating a row of zeros on the Routh-Hurwitz's Table.

From the characteristic equation, 1 + D(s)G(s) = 0, we have

4 (25) (Gro679) =

2 +6s2+(5+Kp)s+ Ky =0.

or

The Routh-Hurwitz's Table for the system becomes as given below.

s° 1 5+ Kp
s* 6 Kr
. (6)(5 + Kr) - (1(K:)
6
1 K;

Observing from the table, the only possible all-zero rows are the s and the l-rows. However,
the l-row gives an imaginary-axis crossing at s = 0. Considering the elements on the s-row, we
get
(6)(5 + Kp) — (1)(K1)
6

=0
The solution of the above equation gives

6Kp — Ky =-30.
For such a choice of constants, the upper or the s*>-row gives

6s>+ K; =0,
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and the solution of this equation s = +j/K/6 gives the imaginary axis crossings or the
frequency of oscillation. Setting

s = +j\/K1[6 = +jw, = £52,

we get \/K1/6 =2 or K| = 24. Since we also need to have 6Kp — K; = —30, we get Kp = —1.

To ensure stability of the system, we also need to check the location of the remaining pole. The
poles of the closed-loop system can be determined from the characteristic equation.

A s+ 24 1 _ (s +1)(s+5) +(—s+24)
1+ D(s)G(s) 1+( 5 )((s+1)(3+5)) s(s+1)(s +5)

s° 465 +4s+24  (s?+4)(s+6)
s(s+1)(s+5)  s(s+1)(s+5)

Since the remaining pole turns out to be at s = —6, the closed-loop system will have sustained
oscillations at a frequency of 2rad/s, when the control is
24
D(s) ==1+—.
S

4. First sketch the root-locus diagram for the following control system. Then from the root-locus
diagram, determine the value of K such that the closed-loop poles have a damping constant of v/2/2.

i TR =42 | Y
. _;_/: =3 i -
[— g
_————_
Solution: From the open-loop gain of the system
82
KG(s) = K——,
Gls) = K™

we realize that there are two poles and one zero. As a result, the root-locus diagram will consist
of a circle centered at the zero and with a radius equal to the geometric mean of the distances
from the poles to the zero.

Jw

oS Double-Pole

A
A
N
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In order for the closed-loop poles to have a damping constant of v/2/2, they need to be on the
radial line with an angle of cos™!(¢) with respect to the negative real axis. In our case, that
angle

a = cos™Y(¢) = cos™1(v2/2) = 45°.

Plotting this radial on the root-locus diagram gives us the location of the desired closed-loop
poles.

Jw

72
"~ Double-Pole

' s
-~

We observe that the radial line and the root-locus diagram intersect. The intersection point,
sq4 = —2 + j2, satisfies the damping-constant requirement, and it is also on the root-locus
diagram. As a result, we can determine the constant K from the magnitude condition.

s+ 2
g2

:l’

|KG(s)
s=—2+4752

S=38y
or K = 4. Therefore, the closed-loop poles will have a damping constant of v/2/2, when K = 4.
5. For the following feedback control system, construct the root-locus diagram for positive values of K.

Determine all the important features like asymptotes, break-away and/or break-in points, imaginary-
axis crossings, angles of departure and/or arrival.

U, SN S S, L . J_ X

52435+ K |
=

—_—

Solution: The sketch of the location of the closed-loop poles is the root-locus diagram. However,
in this case the open-loop gain of the system is

K 2 2K
Se)din) = (32 T 3s +K) (s+2) T (s +2)(2+3s+ K)’

where the root-locus variable K is not a multiplicative coefficient of the open-loop gain. So,
we need to convert the problem into the conventional form while preserving the location of the
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closed-loop poles the same. The closed-loop poles are obtained from the characteristic equation,
where

14 G(s)H(s) =0,

or
| ~0
(s+2)(s2+3s+K)

(s+2)(+3s+ K) +2K
(s+2)(s2+3s+K)

(s +2)(s® + 35 + K) + 2K =0,

$3 + 5582 +6s+ Ks+ 4K = 0.

We need to regroup the characteristic equation, so that the characteristic equation is in the form

n(s)
]+K® =0,

for some polynomials n(s) and d(s). So,
s3 + 552 + 65+ Ks+ 4K =0,
(83 + 552 +65) + K (s +4) =0,

(s +55% +6s) + K(s+4)
(8% + 5s2 + 6s) R

. s+4
1+ K—e———— =
i s3 4 552 + 65

Therefore, the new open-loop gain

s+4 B s+4
83 +5s24+6s  s(s+2)(s+3)
generates the same closed-loop poles as the original open-loop gain, but the open-loop gain
G'(s)H'(s) of the new system is in the usual form for the generation of the root-locus diagram.
In other words, the locations of the closed-loop poles based on the open-loop gains G(s)H(s)
and G’(s)H'(s) are identical, however we can use the regular root-locus drawing techniques on
the primed system.

G'(s)H'(s) = K

First, we sketch the pole-zero locations and the real-axis portion of the root-locus diagram.
Then, we decide the important features to be determined.

Need to determine:

e Asymptotes, and

e Break-away point. -4 -3 -2 X o
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We may also need to determine the imaginary-axis crossings depending on the orientation of
the asymptotes.

Asymptotes

Real-Axis Crossing: 0, = (Y pi— ). z)/(n—m)
The real-axis crossing of the asymptotes is at

o _Lipi=Yn _ (O+(D+(E3) - (4) -1
2 n—m 3_1 — 2 —

Real-Axis Angles: 0, = +(2k + 1) /(n —m)
The angles that the asymptotes make with the real axis are determined from

2k +1)m £(2k+ )7 L7

B n—m 3—-1 >

Break-Away Point: dK/ds =0

From the characteristic equation,

1 +G'(s)H'(s) = 0,

s+4

1+ K——— =
E 83 + 552 + 6s

0,
and
53+ 552+ 6s
s+4
Note that this is the same equation for the original system as well. Therefore,

dK  (3s®+ 105+ 6)(s +4) — (s® + 552 +6s)(1) 25 + 1752 +40s + 24

T ds (s+4)2 - T (s +4)2

and for dK/ds = 0, the equation
2% + 172 +40s +24 =0

gives
s = —4.9483, —2.6294, —0.9223.

The break-away point for positive K is the solution between —2 and 0 that is s = —0.92.

From the asymptote angles, we realize that there will not be any imaginary-axis crossings. With
the features determined, we can now sketch the root-locus diagram.
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