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1. Consider a negative unity-feedback control system with the open-loop transfer function 

Determine the output steady-state error e(m) = y(m) - r(cm), where y is the output and r is the 
reference input, such that r ( t )  = 1 + t + at2 for t >_ 0. ( 1 Opts) 

2. Consider the following control system. 

Determine the range of the constant K, such that the 2% settling-time is less than 4 seconds. (20pts) 

3. Consider the following feedback control system. 

Consider a proportional-integral (PI) controller 

KI Kps + KI  
D ( s )  = K p +  - = 

S S 

Determine the constants Kp and Kr, such that the closed-loop system has sustained oscillations at 
a, frequency of 2 rad/s. ( 2 0 ~ t s )  

4. First sketch the root-locus diagram for the following control system. Then from the root-locus 
diagram, determine the value of K such that the closed-loop poles ha.ve a damping constant of &/2. 

(20pts) 



5. For the following feedback control system, construct the root-locus diagram for positive va.l~lues of K. 
Determine all the important features like asymptotes, break-away and/or break-in points, imaginary- 
axis crossings, angles of departure and/or arrival. (30pts) 
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1. Consider a negative unity-feedba.ck control system with the open-loop transfer function 

Determine the output steady-state error e(m)  = y(m) - r(oo), where y is the output and r is the 
reference input, such that r ( t )  = 1 + t  + at2 for t  > 0. 

Solution: From the open-loop gain of the system, we determine that the system is of type-1. 
Therefore, the steady-state error 

if r is a step input; 
if r  is the unit-ramp input; 
if r  is a positive parabolic input. 

Here, K, is the velocity steady-state error coefficient, where 

K, = lim sG(s) = lim s 
100 

= 100. 
s-0 s-0 ~ ( 0 . 1 ~  + 1) 

Since the system is linear; when r ( t )  = 1 + t  + at2, we get 

2. Consider the following control system. 

Determine the range of the constant K, such that the 2% settling-time is less than 4 seconds. 
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Solution: Since the 2% settling time t2%s = (4/a,,); we have 

a, > 1, or the poles need to be on the left-hand-side of the %[s] = -a, = a = -1 vertical line. 
One way to determine the conditions for the poles to be on the left-hand-side of a vertical line 
is to use the Routh-Hurwitz's Table after shifting the vertical line from the a = 0 line to the 
desired line. 

The closed-loop poles are determined from the factors of the characteristic polynomial or the 

denominator of the closed-loop transfer function. In our case, the characteristic equation is 

and the characteristic polynomial becomes 

qc(s) = s(s  + 6)(s + 13) + K. 

If we use the Routh-Hurwitz's Table on this polynomial, we would determine the conditions for 
the poles to be on the left-hand-side of the a = 0 vertical line. To determine the conditions for 
the left-hand-side of the a = -1 line, we need to shift the characteristic polynomial, such tha,t 

qc(s - 1) = (s - 1) ((s - 1) + 6) ((s - 1) + 13) + K 
= (S - 1)(s + 5)(s + 12) + K 

= s3 + 16s' + 43s + (K - 60). 

With the new polynomial, the Routh-Hurwitz's Table becomes as given below. 

Applying the Routh-Hurwitz's criterion on the new polynomial gives the conditions for the 
left-hand-side of the a = -1 line. The s-term gives 

or 

The 1-term gives 

or 
K > 60. 

Therefore, from the intersection of the two regions, we get 

60 < K < 748. 
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3. Consider the following feedback control system. 

Consider a proportional-integral (PI) controller 

Determine the constants K p  and KI, such that the closed-loop system has sustained oscillations a.t 
a frequency of 2 rad/s. 

Solution: For sustained oscillations, we need to choose the constants, such that there are distinct 
poles on the imaginary axis and no pole on the right-half plane. The candidates for such a 
choice are obtained by generating a row of zeros on the Routh-Hurwitz's Table. 

From the characteristic equation, 1 + D(s)G(s)  = 0, we have 

The Routh-Hurwitz's Table for the system becomes as given below. 

Observing from the table, the only possible all-zero rows are the s  and the 1-rows. However, 
the 1-row gives an imaginary-axis crossing at s  = 0. Considering the elements on the s-row, we 

The solution of the above equation gives 

For such a choice of constants, the upper or the s2-row gives 

6s2 + K I  = 0, 
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and the solution of this equation s = ijdK,/G gives the imaginary axis crossings or the 

frequency of oscillation. Setting 

s = k j  JK1/6 = *jun = 532, 

we get = 2 or KI = 24. Since we also need to have 6Kp - KI  = -30, we get K p  = -1. 

To ensure stability of the system, we also need to check the 1oca.tion of the remaining pole. The 
poles of the closed-loop system can be determined from the characteristic equation. 

Since the remaining pole turns out to be a t  s = -6, the closed-loop system will have sustained 
oscillations a t  a frequency of 2 rad/s, when the control is 

4. First sketch the root-locus diag~am for the following control system. Then from the root-locus 
diagram, determine the value of K such that the closed-loop poles have a damping consta,nt of a/2. 

Solution: From the open-loop gain of the system 

we realize that there are two poles and one zero. As a result, the root-locus diagram will consist 
of a circle centered a t  the zero and with a radius equal to the geometric mean of the distances 
from the poles to the zero. 

,,- Double-Pole 

4 A - * 
u 
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In order for the closed-loop poles to have a damping constant of &/2, they need to be on the 
radial line with an angle of cos-'(0 with respect to the negative real axis. In our case, tha,t 
angle 

a = cos-I(<) = cos-l(J2/2) = 45O. 

Plotting this radial on the root-locus diagram gives us the location of the desired closed-loop 
poles. 

We observe that  the radial line and the root-locus diagram intersect. The intersection point, 
s d  = -2 + j2, satisfies the damping-constant requirement, and it is also on the root-locus 
diagram. As a result, we can determine the constant K from the magnitude condition. 

or K = 4. Therefore, the closed-loop poles will have a damping constant of &/2, when K = 4. 

5. For the following feedback control system, construct the root-locus diagram for positive values of K. 
Determine all the important features like asymptotes, break-away and/or break-in points, ima,' cinary- 
axis crossings, angles of departure and/or arrival. 

Solution: The sketch of the location of the closed-loop poles is the root-locus diagram. However, 
in this case the open-loop gain of the system is 

where the root-locus variable K is not a multiplicative coefficient of the open-loop gain. So, 
we need to convert the problem into the conventional form while preserving the location of the 
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closed-loop poles the same. The closed-loop poles are obtained from the characteristic equation, 
where 

s3 + 5s2 + 6s + K S  + 4K = 0.  

We need to regroup the characteristic equation, so that the characteristic equation is in the form 

for some polynomials n(s)  and d(s). So, 

s3 + 5s2 + 6s + KS + 4K = 0, 

Therefore, the new open-loop gain 

generates the same closed-loop poles as the original open-loop gain, but the open-loop ga,in 
G1(s)H1(s) of the new system is in the usual form for the generation of the root-locus diagram. 
In other words, the locations of the closed-loop poles based on the open-loop gains G(s)H(s )  
and G1(s)H'(s) are identical, however we can use the regular root-locus drawing techniques on 
the primed system. 

First, we sketch the pole-zero locations and the real-axis portion of the root-locus diagram. 
Then, we decide the important features to be determined. 

Need to determine: 

Asymptotes, and 

Break-away point. 
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We may also need to  determine the imaginary-axis crossings depending on the orientation of 
the asymptotes. 

Asymptotes 

Real-Axis Crossing: u, = (C pi - C zi) / (n  - m) 

The real-axis crossing of the asymptotes is a.t 

xi pi - xi ti ((0) t (-2) + (-3)) - (-4) -1 
- - = -0.5. ua = 

n - m  3-1  2 

Real-Axis Angles: 8, = f ( 2 k  + l).lr/(n - m) 

The angles that the asymptotes make with the real axis are determined from 

f (2k + l ) ~  - f (2k + 1 ) ~  T 
6, = - = k-. 

n - m  3 - 1  2 

Break-Away Point: dK/ds  = 0 

Rom the characteristic equation, 

a.nd 

-K = 
s3 + 5s2 + 6s 

s + 4  

Note that this is the same equation for the original system as well. Therefore, 

and for dK/ds  = 0, the equation 

gives 
s = -4.9483, -2.6294, -0.9223. 

The break-away point for positive K is the solution between -2 and 0 that is s = -0.92. 

From the asymptote angles, we realize that there will not be any imaginary-axis crossings. With 
the features determined, we can now sketch the root-locus diagram. 
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