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1. The block diagram of a control system is given in the following figure. 

(a) Obtain a state-space representation of the system without any block-diagram reduction. (15pts) 

(b) Determine the transfer function Y (z)/U(z) of the system, where U = Z[ u ] and Y = Z[ y 1. 
(10pts) 

2. A linear, discrete-time control system is described by 

- 

where ZL, x ,  and y are the input, the state, and the output variables, respectively, and a,  b, and c are 
real constants. 

(a) Determine the necessary and sufficient conditions in terms of a, b, and c, such that the system 
has a reachability index of 1. (05pts) 

(b) Determine the necessary and sufficient conditions in terms of a, b, and c, such that the system 
has a reachability index of 2. (05pts) 

(c) Determine the necessary and sufficient conditions in terms of a, b, and c, such that the system 
is observable. (05pts) 

3. A discrete-time linear control system is described by 

where u, x, and y are the input, the state, and the output variables, respectively. 

(a) Determine the transfer function Y(z)/U(z) of the system, where U = ~ [ u ]  and Y = Z[ y 1. 

pppp-p------------ 

(15pts) 

1 



(b) Design a full state-feedback controller; such that the maximum percent overshoot is between 
1.5% and 4%, and the 5% settling-time is reached in 3 sampling periods. (15~ t s )  

(c) Assuming that only the output is available, implement the controller of the previous part. 

(10pts) 

4. Consider a system described by the difference equation 

where x and u are the state and the input variables, respectively. Determine the optimal control 
action u ( k )  for lc > 0 that would minimize the cost function 

when x(0) = -1. 



Exam#2 
Solutions 

May 04, 2004 

Copyright @ 2004 by L. Acar. All rights reserved. No parts of this document may be reproduced, stored in a retrieval system, or 
transmitted in any form or by any means without the written permission of the copyright holder(s). 

1. The block diagram of a control system is given in the following figure. 

(a) Obtain a state-space representation of the system without any block-diagram reduction. 

Solution: In order to obtain a state-space representation without any block-diagram reduction 
or without determining the closed-loop transfer function, we need to realize the individual 
blocks and use the complete block diagram to generate the state-space equations. 

(a) The first feedforward gain 
block. 

(a) The second feedforward gain 
block. 

(b) Controller realization form. 

(b) Controller realization form. 

(a) The feedback gain block. 
- - - - - - - - 

(b) Controller realization form. 
- - - - - 
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After assigning the state variables as shown in the figure, we obtain 

and 

From the above x3(k + 1) equation, we can solve for x3(k + 1) to get 

Substituting the expression for x3(k + 1) into the above state and the output equations, we 
get 

and 
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Rewriting the equations in matrix form, we get 

Note here that the observer realization form results in a very similar realization diagram. 

(b) Determine the transfer function Y ( z ) / U ( z )  of the system, where U = z [ u ] and Y = Z[ y 1. 

Solution: We can determine the transfer function using couple of approaches. 

Using the expression Y(z)/U(z) = C(rI  - A)-'B + D 
In this approach, we may use the expression for the transfer function, and it involves 
the determination of ( z I  - A)-', where I is the appropriately dimensioned identity 
matrix. One method to determine the inverse of ( z I  - A) is to use row operations on 
the augmented matrix [ ( z I  - A) I ] to generate [ I ( z I  - A)-' 1. 

Therefore, 

In other words, the transfer function 
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Block-diagram reduction 
In this approach, we can use the block diagram reduction methods to determine the 
transfer function. Considering the simplicity of the block-diagram reduction and the 
complexity of the inversion process in the previous method, the block-diagram reduction 
method, in this case, should be the preferred method. 

After one block-diagram reduction step, we get the following diagram. 

Writing the transfer function from the block diagram, we get 

as before. 

2. A linear, discrete-time control system is described by 

where u, z, and y are the input, the state, and the output variables, respectively, and a ,  b, and c are 
real constants. 

(a) Determine the necessary and sufficient conditions in terms of a ,  b, and c, such that the system 
has a reachability index of 1. 

Solution: To determine reachability index of the system, we need to check on the columns of 
the controllability matrix. The controllability matrix 

where A and B are the state and the input matrices of the system, respectively; and since 

In order for an nth order system to have the reachability index equal to 1, the columns 
associated with the B, AB, . . . , A'-~B terms in the controllability matrix should provide 
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n linearly independent columns, but the columns associated with the B, AB, . . . , A'-~B 
terms could not. 

As a result, to have the the reachability index equal to 1, B should provide 2 linearly 

independent columns. Therefore, the reachability index is 1, when a # 0 and b # 0. 

(b) Determine the necessary and sufficient conditions in terms of a ,  b, and c, such that the system 
has a reachability index of 2. 

Solution: To determine reachability index of the system, we need to check on the columns of 
the controllability matrix. The controllability matrix 

where A and B are the state and the input matrices of the system, respectively; and since 

In order for an nth order system to have the reachability index equal to 1, the columns 
associated with the B ,  AB, . . . , A'-' B terms in the controllability matrix should provide 
n linearly independent columns, but the columns associated with the B,  AB, . . . , A ~ - ~ B  
terms could not. 

As a result, to have the the reachability index equal to 2, (?(A, B) should provide 2 linearly 
independent columns, but B should not. In order B not to provide 2 linearly independent 
columns, either a = 0 or b = 0. 

If a = 0, then b # 0; since (?(A, B) should provide 2 linearly independent columns. Similarly, 
if b = 0, then a # 0. 

Therefore, the reachability index is 2; when either a = 0 and b # 0, or a # 0 and b = 0. 

(c) Determine the necessary and sufficient conditions in terms of a ,  b, and c, such that the system 
is observable. 

Solution: To determine the observability of the system, the rank of the observability matrix 
needs to be full. The observability matrix 

where A and C are the state and the output matrices of the system, respectively; and since 

In order for the rank of O(C, A) to be full, the determinant of U(C, A) should not be zero, 
since the observability matrix is a 2x2 square-matrix. So, 

or c2 # 0. Therefore, the system is observable, when c $ 0. 



EE 331 Exam#2 Solutions Winter 2004 6/11 

3. A discrete-time linear control system is described by 

where u, x, and y are the input, the state, and the output variables, respectively. 

(a) Determine the transfer function Y(z)/U(z) of the system, where U = X[ u ] and Y = Z[ y 1, 

Solution: The transfer matrix of a coritrol system described in the state-state representation 

where I is the appropriately dimensioned identity matrix. So, 

In other words, the transfer function is F(z) = ( z2  - 1.62 + 1.05)/(z2 - 0.62 + 0.05). 

(b) Design a full state-feedback controller; such that the maximum percent overshoot is between 
1.5% and 4%, and the 5% settling-time is reached in 3 sampling periods. 

Solution: We determine the restrictions on the location of the desired-pole locations from the 
performance specifications. 
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When we mark these restrictions on the z-plane, we determine that a possible set of desired- 
pole locations is at  zd % 0.1 f j0.2. 

Given Requirements 

Maximum 
percent-overshoot for the 
unit-step input 

Settling time for the 
unit-step input 

Based on our choice of the desired-pole locations, the desired characteristic polynomial is 
given by 

q,,(z) = ( z  - (0.1 + j0.2)) ( z  - (0.1 - j0.2)) = z2 - 0.22 + 0.05. 

We would like to place the closed-loop poles at the desired location via state-feedback 
control. So assume 

~ ( k )  = K x ( k )  = [ k1 k2 ] x ( k )  

General System Restrictions 

1.5% = 0.015 < Mp 5 0.04 = 49,. 

p 2 (0 .05) '1 (~~"~-~) .  

for some state-feedback matrix K. The characteristic polynomial of the system under 
state-feedback control can be determined from the denominator of the transfer function, 

Specific System Restrictions 

From the Q-Mp curves, 

( = 0.8 

provides a range of cr values 
that may satisfy the 
requirement. 

For t5xs = k5%sT < 3T, and 
~ S % S  5 3; 

p 5 (0.05)'/(~-') = 0.2236. 
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such that 

q,(r) = det (21 - ( A  + B K ) )  

Setting q, (z) = q,, (z) , we get 
-kl + 0.05 = 0.05, 

or kl = 0; and 
-kg - 0.6 = -0.2, 

or k2 = -0.4. Therefore, 
u(k) = [ 0 -0.4 ] x(k). 

(c) Assuming that only the output is available, implement the controller of the previous part. 

Solution: When only the output is available, state-feedback control can still be implemented 
if an observer is used. Moreover, we know that if a system is observable, we can place 
the closed-loop poles of the observer at any desired location via error-feedback control. So 
assume 

for some observer-error gain matrix L, where 5 is the observer output variable. Assuming 
that the observer poles are at 0.01 and 0.01, the desired observer-characteristic polynomial 

The observer-characteristic polynomial q, under the error-feedback control can be deter- 
mined from the denominator of the transfer function of the observer, such that 

qo(z) = det(zI - ( A  + LC)) 

Setting qo (z) = qod (z), we get 

and 
0.5511 - l2 + 0.05 = 0.0001. 

In matrix form, we get 
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T and after solving for L = [ l1 12 ] , we obtain 

where e and are the error-feedback control and the observer output variables, respectively. 

4. Consider a system described by the difference equation 

x ( k  + 1) = 2 x ( k )  + u ( k ) ,  

where x  and u are the state and the input variables, respectively. Determine the optimal control 
action u ( k )  for k  2 0  that would minimize the cost function 

J = 10x2(4) + ( x 2  ( k )  + 5u2(k ) )  , 
k=O 

when x ( 0 )  = -1. 

Solution: The Hamiltonian for this cost function and the system is 

Hk ( ~ ( k ) ,  ~ ( k ) ,  A* ( k  + 1) )  = : (x2(k )  + 5u2(k))  + X(k + 1)  ( 2 x ( k )  + u ( k ) ) ,  2  

where X is the Lagrange multiplier. The optimality conditions in terms of the Hamiltonian are 

0  =  HI, ( ~ ( k ) ,  ~ ( k ) ,  X(k + 1 ) )  
d u ( k )  

= 5u(k)  + X(k + 1)  for 0  5 k  5 3 

x ( k  + 1) = 
aHk ( ~ ( k ) ,  4% X(k + 1 ) )  

aX(k + 1 )  
= 2 x ( k )  + u ( k )  for 0  5 k  5 3. 

From the above optimality equations, we get 

X(k + 1)  = - ( 1 / 2 ) x ( k )  + (1 /2 )X(k ) ,  

and 

Or, in matrix form 
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One of the boundary conditions is given as x(0) = -1, and the other one needs to be determined 
from the terminal constraint, such that 

where N is the final time step, and g is the additional terminal cost. Since, in our case, N = 4 
and ( N ,  s ( N ) )  = 10i2 (4), we get 

Next, we need to solve the above matrix equation to determine X(0). Since, 

x(0) = - 1, and X(4) = 20x(4); we get 

Since u(k) = -(1/5)X(k + 1) for k = 0, . . . , 3 from the optimality condition, we need to 
determine X(k) for k = 1, . . . , 4. 
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From u(k) = -(1/5)X(k + 1) for lc = 0,  . . . , 3, we get 

u(0) = 1.53, u (1)  = 0.72, u(2)  = 0.34, and u(3) = 0.16. 


