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1. The block diagram of a control system is given in the following figure.

? z—1 -(|—/ -

(a) Obtain a state-space representation of the system without any block-diagram reduction. (15pts)

(b) Determine the transfer function Y'(2)/U(z) of the system, where U = Z[u] and ¥ = Z[y].
(10pts)

2. A linear, discrete-time control system is described by

w(k+1)={0_025 é]m(k}-{—[g g]u(k),

y(k)=[c 0 ]a(k),

where u, @, and y are the input, the state, and the output variables, respectively, and a, b, and ¢ are
real constants.

(a) Determine the necessary and sufficient conditions in terms of a, b, and ¢, such that the system
has a reachability index of 1. (05pts)
(b) Determine the necessary and sufficient conditions in terms of a, b, and ¢, such that the system
has a reachability index of 2. (05pts)

(c) Determine the necessary and sufficient conditions in terms of a, b, and ¢, such that the system
is observable. (O5pts)

3. A discrete-time linear control system is described by

(k4 1= { —o.%s o ] Bk) 4 [ ’ ] u(k),

yk)=[1 =1 ]ok)+[1 ]u(k),
where u, @, and y are the input, the state, and the output variables, respectively.

(a) Determine the transfer function Y (z)/U(z) of the system, where U = Z[u] and Y = Z[y].
(15pts)



(b) Design a full state-feedback controller; such that the maximum percent overshoot is between
1.5% and 4%, and the 5% settling-time is reached in 3 sampling periods. (15pts)

(c) Assuming that only the output is available, implement the controller of the previous part.
(10pts)

4. Consider a system described by the difference equation
z(k+ 1) = 2z(k) + u(k),

where z and u are the state and the input variables, respectively. Determine the optimal control
action u(k) for k > 0 that would minimize the cost function

3
J=102*(4) + ) % (z®(k) + 5u?(k)) ,
k=0

when z(0) = —1. (20pts)
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1. The block diagram of a control system is given in the following figure.

? z—1 I \:I_/
- 2 —il

(a) Obtain a state-space representation of the system without any block-diagram reduction.

Solution: In order to obtain a state-space representation without any block-diagram reduction
or without determining the closed-loop transfer function, we need to realize the individual
blocks and use the complete block diagram to generate the state-space equations.
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(a) The first feedforward gain (b) Controller realization form.
block.
— 1
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(a) The second feedforward gain (b) Controller realization form.
block.

— %] |
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(a) The feedback gain block. (b) Controller realization form.
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The connected and “expanded” block diagram is shown below.

T """" é """""""""

-®
i —

After assigning the state variables as shown in the figure, we obtain

zi(k+1) = z1(k) + (u(k) — (z3(k + 1) — z3(k))) = 21(k) + z3(k) + u(k) — z3(k + 1),
zo(k+ 1) = za(k) + (w(k) — (z3(k + 1) — 23(k))) = za(k) + z3(k) + u(k) — z3(k + 1),
z3(k + 1) = .’L‘Q(k -+ l) = :L‘-g(k) + .E3(k) +u(k) — :1:3(k + 1),

and
y(k) = zo(k + 1) — z1(k) = —z1(k) + z3(k + 1).
From the above z3(k + 1) equation, we can solve for z3(k + 1) to get
z3(k +1) = (1/2)za(k) + (1/2)z3(k) + (1/2)u(k).

Substituting the expression for z3(k -+ 1) into the above state and the output equations, we
get

z1(k + 1) = 21 (k) + x3(k) + u(k) — ((1/2)z2(k) + (1/2)z3(k) + (1/2)u(k))
1

21(k) = (1/2)z2(k) + (1/2)zs(k) + (1/2)u(k),

2ok +1) = 2a(k) + z3(k) + ulk) — ((1/2)e2(k) + (1/2)z3(k) + (1/2)u(k)
= (1/2)za(k) + (1/2)zs(k) + (1/2)u(k),

a3k +1) = zo(k +1)
= (1/2)xa(k) + (1/2)23(k) + (1/2)u(k),

I

and

y(k) = —21(k) + ((1/2)z2(k) + (1/2)z3(k) + (1/2)u(k))

—z1(k) + (1/2)z2(k) + (1/2)z3(k) + (1/2)u(k).

o



EE 331

Exam#2 Solutions Winter 2004  3/11

Rewriting the equations in matrix form, we get

z1(k +1) 1 -1/2 1/2 z1(k) 1/2
z2(k+1) | =] 0 1/2 1/2 z2(k) | + | 1/2 | u(k),
z3(k + 1) 0 1/2 1/2 z3(k) 1/2
2y (k)
W =[-1 12 1/2] | o) |+ 1/2 Julk).
3(k)

Note here that the observer realization form results in a very similar realization diagram.

(b) Determine the transfer function Y (z)/U(z) of the system, where U = Z[u]and Y = Z[ y |.
Solution: We can determine the transfer function using couple of approaches.

Using the expression Y (z)/U(z) = C(zI — A)"*B+ D
In this approach, we may use the expression for the transfer function, and it involves
the determination of (zI — A)~!, where I is the appropriately dimensioned identity
matrix. One method to determine the inverse of (21 — A) is to use row operations on
the augmented maftrix [ (2 — A) I] to generate [I (21 — A)7! ]

[ z=1 112 -1/2 | 1 0 0 ]
0 z—1/2 —1/2 0 1 0
0 —1/2 z—1/2 0 0 1
24z - 1) 1 = | 2 0 0
- 0 2: -1 =1 0 2 0
(i -1 2z —1 0 0 2
20z - 1) 1 =3 2 0 0
=, 0 2: -1 -1 0 2 0
o 0 4z(z—1)/(22 — 1) 0 2/(2z — 1) 2
2z — 1) 1 =1 2 0 0
= 0 2:—1 =1 0 2 0
0 0 2z(z—1) 0 1 2: -1
2(z—1) 0 —2(z = 1)/(2z = 1) 2 —2/(2: - 1) 0
sy 0 2z —1 -1 0 2 0
0 0 22(z — 1) 0 1 2z —1
[ 2(z—1){2z2 = 1) a —2(z — 1) 2(2z — 1) -2 0
— 0 2z -1 -1 e] 2 0
] 0 2z(=— 1) 0 1 2: -1
1 ] 0 1/(z—1) —1/(2:(= — 1)) 1/(22(z — 1))
— 0 1 0 0 (2= = 1)/(22(z = 1)) 1/((22(z — 1)) :
L 0 0 1 ] 1/(22(z — 1)) (22 = 1)/(2z(z — 1))
Therefore,
i 2% =1 1 1/2
C(zI—A)“B+D=-2(—l—)[ -1 1/2 1/2] 0 2:-1 1 1/2
Zlz —
0 1 2z=1 1/2
+1/2
- [-1 1/2 1/2] ; +1/2=1/2.
22(z—1) R
-
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Block-diagram reduction
In this approach, we can use the block diagram reduction methods to determine the
transfer function. Considering the simplicity of the block-diagram reduction and the
complexity of the inversion process in the previous method, the block-diagram reduction
method, in this case, should be the preferred method.

After one block-diagram reduction step, we get the following diagram.

1
=
s A z y
9p Z—=] _ \-’—_/
- = z
z Zz—1
Writing the transfer function from the block diagram, we get
Y(z) 1 z 1 __ & (z—l .
U(z) 1+ (z/(z=1)((z=1)/2) J \2=1 =z-1) 1+1\z2-1) 2’
as before.

2. A linear, discrete-time control system is described by

a

m(k+1)={025 é]m(k)+[0 g]u(k),
y(k)=[ ¢ 0]a(k),

where u, @, and y are the input, the state, and the output variables, respectively, and a, b, and ¢ are
real constants.

(a) Determine the necessary and sufficient conditions in terms of a, b, and ¢, such that the system
has a reachability index of 1.

Solution: To determine reachability index of the system, we need to check on the columns of
the controllability matrix. The controllability matrix

0 b

8(A,B)=[B|AB]=[H ’

a 0
0 025 |’
where A and B are the state and the input matrices of the system, respectively; and since
0 1 0 b a 0
48={ o35 0)0e 0)=18 oz

In order for an nth order system to have the reachability index equal to [, the columns
associated with the B, AB, ..., A" B terms in the controllability matrix should provide
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n linearly independent columns, but the columns associated with the B, AB, ..., A"2B
terms could not.

As a result, to have the the reachability index equal to 1, B should provide 2 linearly
independent columns. Therefore, the reachability index is 1, when a # 0 and b # 0.

(b) Determine the necessary and sufficient conditions in terms of a, b, and ¢, such that the system
has a reachability index of 2.

Solution: To determine reachability index of the system, we need to check on the columns of
the controllability matrix. The controllability matrix

0 bla O
a 00 025 |’

where A and B are the state and the input matrices of the system, respectively; and since

g 1 0 b a 0
48= o s 5= o)
In order for an nth order system to have the reachability index equal to [, the columns
associated with the B, AB, ..., A'""1B terms in the controllability matrix should provide

n linearly independent columns, but the columns associated with the B, AB, ..., A""2B
terms could not.

e(A,B)z[B\AB}=[

As a result, to have the the reachability index equal to 2, €(A, B) should provide 2 linearly
independent columns, but B should not. In order B not to provide 2 linearly independent
columns, either a =0 or b= 0.

If a = 0, then b # 0; since C(A, B) should provide 2 linearly independent columns. Similarly,
if b=0, then a # 0.
Therefore, the reachability index is 2; when either a =0 and b # 0, or a # 0 and b = 0.

(c) Determine the necessary and sufficient conditions in terms of a, b, and ¢, such that the system

is observable.

Solution: To determine the observability of the system, the rank of the observability matrix
needs to be full. The observability matrix
B c 0
B 0 ¢’

where A and C are the state and the output matrices of the system, respectively; and since

C4=| ¢ 0][025 é]:[o c].

In order for the rank of O(C, A) to be full, the determinant of O(C, A) should not be zero,
since the observability matrix is a 2x2 square-matrix. So,

C
CA

O(C,A) = [

det(O(C, A)) = det [ [C] 2 :‘ #0,

or ¢2 # 0. Therefore, the system is observable, when ¢ # 0.
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3. A discrete-time linear control system is described by

2k +1) = [ ot o ] (k) + [ ! ]u(k),

y(ky=[1 =1 ]ak)+[ 1 ]uk),
where u, @, and y are the input, the state, and the output variables, respectively.

(a) Determine the transfer function Y (z)/U(z) of the system, where U = Z[u] and Y = Z[y].

Solution: The transfer matrix of a control system described in the state-state representation
z(k+ 1) = Az (k) + Bu(k),
y(k) = Cz(k) + Du(k),

is
F(z)=C(zI-A)"'B+D,

where [ is the appropriately dimensioned identity matrix. So,

Fal=|1 _1](3[(11 H_[vo.{gm OTGD_I[?]“'-[l]
[ “1}{0.%5 z_—lo.a}_l{?]”l]

1 z—06 1 0
= G0 005! “1][—0.05 ZHJHI]

Il

1 1
= 70500 ! ][z]+[1]
B —z+1 +1_22—1.62+1.05
T 22-0.62 +0.05 T 22-0.6240.05

In other words, the transfer function is F(z) = (22 — 1.6z + 1.05)/(2% — 0.6z + 0.05).

(b) Design a full state-feedback controller; such that the maximum percent overshoot is between
1.5% and 4%, and the 5% settling-time is reached in 3 sampling periods.

Solution: We determine the restrictions on the location of the desired-pole locations from the
performance specifications.
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Given Requirements General System Restrictions Specific System Restrictions

From the a-M,, curves,

Maximum (=08

percent-overshoot for the 1.5% =0.015 < M, <0.04 = 4.

unit-step input provides a range of a values
that may satisfy the
requirement,

For tgs = ksosd < 37, and
Settling time for the p < (0.05)/ (kess=1), ksns < 33

un1t~step mput p S (0.05)1{‘{3‘—1) — 0.2236.

When we mark these restrictions on the z-plane, we determine that a possible set of desired-
pole locations is at zg =~ 0.1 + j0.2.

2= R(2) + jS(2) = =T IVI-CWT

Based on our choice of the desired-pole locations, the desired characteristic polynomial is
given by

Gog(2) = (2= (0.1 +50.2)) (2 — (0.1 — 5j0.2)) = z* — 0.2z + 0.05.

We would like to place the closed-loop poles at the desired location via state-feedback
control. So assume

u(k) = Ka(k) = [ ki ko ]a(k)

for some state-feedback matrix K. The characteristic polynomial of the system under
state-feedback control can be determined from the denominator of the transfer function,
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such that

gelz) = det(zI - (A+ BK))

cinefi 8] (s daJ+ 2] 1)

= 2% + (—kg — 0.6)z + (—k; + 0.05).

Setting qc(z) = qc,(z), we get
—k1 + 0.05 = 0.05,

or k; = 0; and
—ko — 0.6 =—-0.2,

or ks = —0.4. Therefore,
uk)=[0 -04 ]|z(k).

(c) Assuming that only the output is available, implement the controller of the previous part.

Solution: When only the output is available, state-feedback control can still be implemented
if an observer is used. Moreover, we know that if a system is observable, we can place
the closed-loop poles of the observer at any desired location via error-feedback control. So
assume

e(k) = L -u) = | 1 ] 00 - u(#)

for some observer-error gain matrix L, where ¢ is the observer output variable. Assuming
that the observer poles are at 0.01 and 0.01, the desired observer-characteristic polynomial

Goy(2) = (2 —0.01)(z — 0.01) = 2 — 0.02z + 0.0001.

The observer-characteristic polynomial ¢, under the error-feedback control can be deter-
mined from the denominator of the transfer function of the observer, such that

go(z) = det(zl — (A+ LC))

e[ 2] (e ] [2]0 D)

= 22 + (=l + I3 — 0.6)z + (0.55]; — I + 0.05).
Setting ¢o(2) = goy(2), we get
-l + 13 — 0.6 = —0.02,

and
0.551; — ls + 0.05 = 0.0001.

—1 1 h 0.58
0.55 -1 ls —0.0499 |’

In matrix form, we get
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and after solving for L= [l L ]T, we obtain

-1.178 | ,.
where e and § are the error-feedback control and the observer output variables, respectively.

4. Consider a system described by the difference equation
z(k + 1) = 2z(k) + u(k),

where x and u are the state and the input variables, respectively. Determine the optimal control
action u(k) for k > 0 that would minimize the cost function

= 102%(4) + Z z?(k) + 5u3(k))

when z(0) = —1.

Solution: The Hamiltonian for this cost function and the system is

Hy (z(k), u(k), \* (k + 1)) = (z?(k) + 5u2(k)) + Ak + 1) (22(k) + u(k)),

o =

where )\ is the Lagrange multiplier. The optimality conditions in terms of the Hamiltonian are

OH ((k), u(k), A(k +1)) _

Ak) = 508 2(k) + 2\ (k +1) for 0 < k < 3,
_ OHy(z(k), aﬂ%’\(k“)) = 5u(k) + A(k+1) for 0< k < 3
2k +1) = Of (k) ulk), Al +1)) = 2z(k) + u(k) for 0 < k < 3.

Nk + 1)
From the above optimality equations, we get
Ak +1) = —(1/2)z(k) + (1/2)A(k),
and
o(k + 1) = 2z(k) + u(k) = 2z(k) + (—(1/5)A(k + 1))
= 2z(k) — (1/5)(=(1/2)z(k) + (1/2)A(k)) = (21/10)z(k) — (1/10)A(k).

z(k+1) | | (21/10) —(1/10) | | (k)
Ak+1) || —-1/2) (1/2) k) |

Or, in matrix form
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One of the boundary conditions is given as z(0) = —1, and the other one needs to be determined
from the terminal constraint, such that

where N is the final time step, and g is the additional terminal cost. Since, in our case, N = 4

= 1022(4

and g(N,m(N))

dg(N,z(N)) ) -
(W - A[N)) =0

), we get

d(10z%(4))

Ad) = dz(4)

= 20z(4).

Next, we need to solve the above matrix equation to determine A(0). Since,

[ (21/10) —(1/10) |*
—a) ()
[ (21/10) —(1/10) |*
—a @) |

Il

z(0) = —1, and A\(4

[ (21/10) —(1/10) } [ (21/10) —(1/10) ] B

(4) (21/10) —(1/10) 2(0)
A(4) —(1/2) (1/2) A0) |’

0x(4); we get
z(4) = —(25287/1250) (—1) — (1547/1250)A(0),
20z(4) = —(1547/250) (—1) + (107/250)A(0),

or A(0) = —(20539/1259) ~

Since u(k) =

—(1/5)A(k + 1) for k = 0, ...,
determine (k) for k=1, ..

—16.31.

3 from the optimality condition, we need to

. 2

_[@no) ~n0) ] [=0) ] [ -047]
T2 a2 | [ A0 | T -T66 |
_[ @0 ~q/10) ][ ()] _[ -022]
Tl-a a2 [y || 88 |
_ [ @0 —(/10) | [ =) | _ [ -0.10 ]
a2 a2 | A ]| -ues |

21/10) —(1/10) [ [ 2(3) | [ —0.04
—(1/2) (1/2) e |

[ (223/50) —(13/50)

| —(1/2) (1/2) | | —(1/2) (1/2) —(13/50)  (3/10)
[ (223/50) —(13/50) | [ (223/50) —(13/50) |
-(13/50)  (3/10) | [-(13/50)  (3/10) |
[ (25287/1250) —(1547/1250)
| —(1547/250) (107/250) |’

1
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From u(k) = —(1/5)A\(k+1) for k=0, ..., 3, we get

u(0) = 1.53, u(l) = 0.72, u(2) = 0.34, and u(3) = 0.16.



