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1. Find the extremal of the functional :
J(z) = / & dt
0
with z(0) =0, z(1) = 1/4, and
1
K(z) = / w1,
0

Solution: The extremal to the cost function

by 1
J(z, &) = ®(t, z, &) dt = / 2 dt
0

to

with the integral constraint

ty 1
K(:r.i:):f A(t,m,z‘:)dtzfo zdt =1
to

is the solution to the Euler-Lagrange’s equation

d d

(@, — E@"’) +A(As — anj,) =0,
for a constant A provided that the extremal exists and it is not the extremal of K (z, &) as well. In
our case,

0- L) +a20- L) =0,

dt dt '
or
—2z+ A =0.

The solution to the above differential equation is
z(t) = (M4 + e1t + co,

for some constants ¢; and co. We need to determine the unknown constants from the boundary
conditions. At t =0, z(0) =0, so

[(A/4) + e1t + 2], =0,
orcy=0. At t =1, z(1) = 1/4, so

[(A/4)* + et +¢2),_, =0,
or ¢; = (1= A)/4. In other words,

z(t) = (\/4)t? + (1 — N)/At.
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We need to determine the constant A from the additional constraint, where

K(z)= folxdz= /01 ((A/4)E* + (1= \)/4t) dt
= [(A/12)t3 o ,\)/s::?]: = [(A/lz) § = ,\),fs} - [o] =1,

or A = —21. Therefore, the optimal solution is

z(t) = —(21/4)8% + (11/2)t for 0 < t < 1.

2. Consider the cost function

J(@.u) = ¥(T) [ :jg He ] a:(T)+/UT (mT [ 362 33,) ] z+ (1/2)u9) dt.

&

and a continuous-time linear control-system described by

s -1 1 1
z(t) = [ 0 —1 }m(t] + [ 0 ] u(t),
where u and x are the control and the state variables, respectively.

(a) Obtain the optimal feedback control that minimizes the cost function .J for T" = 1.

2/7

Solution: Since the finite-time cost function is quadratic in the state and the input variables. the

optimal control can be expressed in state-feedback form, such that
u(t) = —R™'BTP(t)z(t),

where R is from the cost function

7 = 3aT(t)Sa(ty) + /0 5 (27 (OQa(t) + uT () Ru(t)) dt,

and P is the solution to the riccati equation
P(t) = —ATP(t) — P(t)A+ P(t)BR™'BTP(t) — Q

with the end condition
Ply) =8

for the control system described by
z(t) = Ax(t) + Bu(t).
In our case, we have
-1 1
A= 1] s

Since P is symmetric, let
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Substituting all these matrices into the riccati equation, we get

. . T
[Pl 102]:_[}01 p2 [—1 1]_[—1 1} {Pl Pz]

P2 P3 P2 P3 0 -1 0 -1 P2 D3

) g .
4| P [1}(1)—1[1} {Pl Pz]_{J U}_
p2 p3 ][0 0 p2 p3 0 3

[}51 ﬁz]z[m —p1+p2]+[ P1 P2 ]

P2 P3 p2 —p2+p3 -p1+p2 —p2+p3

[ : ] [ : ] [ ' }
P2 0 P2 D3 0 3
We get

pr=2p1+p’ -3,
P2 = —p1 + 2p2 + p1p2,

and
Ps = —2ps + 2ps + pa” — 3

from the (1, 1), (1,2) (or (2,1)), and (2,2) terms of the matrix equation, respectively. From the
equation in the (1,1) term, we have

Pr=2pm+p*=3=(p+3)(p—1)

with p;(1) = 1. Solving the above differential equation, we get

/((Pl "'3)1(101 - 1)) dp, =f dt,
[ (S -2 =t

n(pl_1)=4t+b,
r1+3

or i
P — 4t
=:ge.
P +3
Substituting p; (1) =1, we get ¢ =0, or
p—1
p1+3

So,pi(t) =1for0<t<1.

Similarly, from the equation in the (1,2) (or (2, 1)) term, we have
P2 =—p1+2p2+p1p2 =3p2 — 1

with py(1) = 1/3. Solving the above differential equation, we get

pa(t) =de® +1/3.



EE 432

Exam#1 Solutions Spring 2006

Substituting pa(1) = 1/3, we get d = 0. So, po(t) =1/3 for 0 <t < 1.
Finally, from the equation in the (2,2) term, we have
p3 = —2ps + 2p3 + p2° — 3 = 2p3 — 32/9
with p3(1) = 2. Solving the above differential equation, we get
pa(t) = ee® +16/9.

Substituting p3(1) = 2, we get e = (2/9)e2. So,

pa(t) = (2/9) (s + e2(t—1))

for 0 <t < 1. As a result,

1 1/3
P0={1fs @miaseen)

for 0 <t < 1. Therefore, the optimal control is

1 1/3

u(t) = —R™'BT Pz(t) = —(1)-1 [1 0] [ 1/3 (2/9)(8 + €2t-D) } x(t),

or

wt)=—[1 1/3 |a(t)=-[1 1/3][2%2] for0<t<1.

(b) Determine the optimal cost J* for an arbitrary initial state, when T" = 1.

cost 1
J* = E::;:9"(0)}9(0);;:(0),

where x is the state variable, and P is the solution to the riccati equation. In our case.

T 1/3
P0=[ s oo e ]

for0 <t <1. So,

_r 4 1/3 B 1 0.3333
P(0) = [ 1/3 (2/9)(8 +e7?) ] N [ 0.3333 1.8079 }

and for z(0) = [ z1(0) z2(0) ]T. the optimal cost

o 1 0.3333 ][ z1(0)
J*=[ 21(0) 22(0) ] [0.3333 1.8079] [:c;((l)

4/7

Solution: For the finite-time quadratic cost function with the state-feedback control, the optimal

] = 212(0)+0.666721 (0)z2(0)+1.8079z2(0).
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3. Find the optimal control that will minimize the cost function
I
J(Il,mg) — / (1/2) (I12 +$22] dt,
0

and transfer the initial state (0) = [ -4 0 ]T to the final state z(T") = [4 0 ]T for the control system
described by

&1(t) = zo(t)
To(t) = u(t),

where u and x = [ r] T2 ]T are the control and the state variables, respectively, provided that |u(t)| < 1
for t > 0.

Solution: In this problem, the finite-time cost function is quadratic in the state variables. but the input
variable is missing. As a result, we need to use the Pontryagin’s optimality condition to determine
the optimal control.

The Hamiltonian for a system described by
2(t) = Az(t) + Bul(t).
with the cost function -
J(z,u) = f o(t, x, u) dt,
0

is given by
H(t, u,z,A) = ¢(t,z,u) + AT(A:I: + Bu),

where u and @ are the input and the state variables, respectively, and A is the langrange multiplier.
In our case,

H(t,u,z,2) = (1/2)212 + (1/2)z2? + Mz + Aou,
where A= [ Ay A ]".

The optimality conditions in terms of the Hamiltonian are
T = Hls j:l = Iy,

T = u;

I\Z—Hz; A]. = =d];

Ao =—z3— Ai;

[H} _— [H] i (/2232 + (1/2)232 + Aoy + Aut < (1/2)212 + (1/2)3? + Azh + Mu.
i-——A" A=At
or A\u' < Au,
where (1* designates the optimal values. From the last optimality condition, we get

u" = —sgn(Az).
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In order to determine the optimal trajectory, we need to analyze the response when u = 1. For
u = +1, we get

or
z1(t) = 22 /2 + 1t + ¢
xg(t) =+t + ¢,

for ¢ > 0 and for some constants ¢; and co. To get a state trajectory, we eliminate the time variable
by solving for t. From the second equation, we have ¢t = £(z9 — ¢1), and
zy=%(z—1)?/2+ci(za—c1) + ¢
= :f:(l/?) ((IQ - 61)2 +2ci(za—c1) + 612) + c3
2
=+(1/2)((z2—c1) + 1) +e3
= +(1/2)z9% + c3

Therefore, the state trajectories are parabolas with vertices at (c3,0). To see the direction of motion
on the parabolas. we may check the extreme values of t as shown in the following table.

t (-'1:1; m2)u=_1 (2!1,332)“:4_1
—00 (—OO, +00) ('1'001_'00)
+00 (=00, —00) (+00, +00)
x3 N =2
8 8
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u = —1 case. u = 1 case.

Since our destination is z(T) = [4 []]T, the last switch is to be to the curves that go through
(4,0), specifically

= ‘(1/2)1‘22+4, when u = —1;
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and

21 = (1/2)z2% + 4, when u = 1.

To determine the control signal for each region, we choose the trajectories that intersect the above
curves with different values of u as shown in the following figures. The first figure shows the region
in the state trajectory, where the optimal control starts with « = —1: and when 2| = (1/2)z32 + 4.
that is shown by the thicker line in the first figure, the control is switched to u = 1. The second
figure shows the region, where the optimal control starts with u = 1; and when z; = —(1/2)z22 + 4.
that is shown by the thicker line in the second figure, the control is switched to u = —1.
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(a) u=—1tou=1 case. (b) u=1tou= -1 case.

There is also the consideration of singularity intervals. We observe that the singularity intervals
occur when A2 = 0 for a time period. In that time period, A2 = 0, and as a result A\ = —x5. In
addition, we have
H*| ey = [(1/2)3:;2 + (1/2)x3% + A3z} + ,\;u'] ximmay = (1/2) (2] = 23) (] +23) = 0.

Ai=0

2 ‘15:0

since the final time is free. In either case, since |u| < 1, we get |z;| < 0 and |z3| < 0. Since those

regions of state variables are not encountered to go from z(0) = [ -4 0 ]T tox(T)=[4 0 ]T: in
our region of operation, we don’t have a singular interval during our trajectory.

Starting at (—4,0), we first get on the trajectory 1 = (1/2)x2? + c3 with control u = 1; then switch
to the trajectory x; = —(1/2)z9? + 4 with control v = —1 to reach the final destination (4.0).
Solving for the constant c3, such that the trajectory z; = (1/2)z2? + c3 goes through the point
(—4,0); we get z; = (1/2)z2? — 4. The intersection points of the trajectories z; = (1/2)z2? — 4 and
z1 = —(1/2)z2? + 4 are (0,£2v/2). In other words, the optimal switching solution is
{3:1:—4}u=—1{z1=0 }u:—l{m:-k}
o =0 o =0 [~

Tz =2V/2



