(a) Find a solution to
\[u_{tt} - u_{xx} = 0 \quad \text{for} \quad 0 < x < 1, \ 0 < t < \infty, \]
subject to
\[u_x(0,t) = 0 = u_x(1,t) \quad \text{for} \quad t \geq 0, \]
and
\[u(x,0) = \cos^2(\pi x), \quad u_t(x,0) = 0 \quad \text{for} \quad 0 \leq x \leq 1. \]

(b) Use the energy method to show that there is only one solution to the problem in part (a).
HW 14: (a) \[u(x,t) = X(x)T(t) \] in the homogeneous portion of the problem leads to
\[
\begin{cases}
X''(x) + \lambda X(x) = 0, & X(0) = 0 = X'(1), \\
T''(t) + \lambda T(t) = 0, & T'(0) = 0.
\end{cases}
\]
The eigenvalues are \(\lambda_n = (n\pi)^2 \) and the eigenfunctions are \(X_n(x) = \cos(n\pi x) \) \((n=0,1,2,...) \).
The solution to the \(\tau \)-problem is \(T_\tau(t) = \cos(n\pi \tau t) \) \((n=0,1,2,...) \). Hence
\[
u(x,t) = \sum_{n=0}^{N} a_n \cos(n\pi x) \cos(n\pi \tau t) \]
solves the homogeneous portion of the problem for any \(N \geq 1 \) and any constants \(a_0, a_1, ..., a_N \).

\(\frac{1}{2} + \frac{1}{2} \cos(2\pi x) = \cos^2(\pi x) \leq u(x,0) = \sum_{n=0}^{N} a_n \cos(n\pi x) \) for \(0 \leq x \leq 1 \) \(\Rightarrow a_0 = \frac{1}{2}, a_1 = \frac{1}{2}, \) and all other \(a_n = 0 \).

(b) Let \(v = v(x,t) \) be any other solution to the problem in (a) and consider the energy function
\[E(t) = \frac{1}{2} \int_0^1 [w_t^2(x,t) + w_x^2(x,t)] \, dx \]
of the difference \(w(x,t) = u(x,t) - v(x,t) \).
Note that \(w \) solves \(w_{tt} - w_{xx} = 0 \) in \(0 < x < 1, \ t \geq 0 \), \(w_x(0,t) = w_x(1,t) \) for \(t \geq 0 \).
\(w(x,0) = 0 \) \(\Rightarrow w_t(x,0) = 0 \) for \(0 \leq x \leq 1 \).
\[\frac{dE}{dt} = \frac{1}{2} \int_0^1 [w_t^2(x,t) + w_x^2(x,t)] \, dx = \int_0^1 [w_t(x,t)w_{tt}(x,t) + w_x(x,t)w_{xt}(x,t)] \, dx = \int_0^1 [w_x(x,t)w_{xx}(x,t) + w_x(x,t)w_{xt}(x,t)] \, dx = \int_0^1 \frac{1}{2} [w_t(x,t)w_x(x,t)] \, dx = \frac{1}{2} \int_0^1 [w_t^2(x,t) + w_x^2(x,t)] \, dx = 0. \]
Therefore, for all \(t \geq 0 \), \(E(t) = E(0) = \frac{1}{2} \int_0^1 [w_t^2(x,0) + w_x^2(x,0)] \, dx = 0. \) By the vanishing theorem, it follows that \(\frac{1}{2} [w_t^2(x,t) + w_x^2(x,t)] = 0 \) for all \(0 \leq x \leq 1 \) and all \(t \geq 0 \).
Consequently \(w_t(x,t) = w_x(x,t) = 0 \) for all \(0 \leq x \leq 1 \) and all \(t \geq 0 \). It follows that \(u(x,t) = \text{constant} \) for all \(0 \leq x \leq 1, \ t \geq 0 \). But \(\Theta \) implies this constant is zero.

I.e. \(u(x,t) = v(x,t) \) for all \(0 \leq x \leq 1 \) and all \(t \geq 0 \).