A thin rod of unit length has its lateral surface insulated against the flow of heat. The material comprising the rod has thermal conductivity 5.2, specific heat 4.0, and density 1.3. The left end of the rod is insulated:

\[u_x(0,t) = 0 \quad \text{for} \quad t \geq 0, \]

its right end radiates freely into air of constant temperature zero:

\[u_x(1,t) + 0.5u(1,t) = 0 \quad \text{for} \quad t \geq 0, \]

and the initial temperature distribution in the rod is uniform:

\[u(x,0) = 100 \quad \text{for} \quad 0 \leq x \leq 1. \]

(a) Use separation of variables and deduce the corresponding eigenvalue problem.

(b) Find the condition(s) satisfied by the eigenvalues of this problem. Please show the details for the calculation in each “case”.

(c) Show that there exists an infinite sequence of eigenvalues for this problem and numerically approximate to eight decimal place accuracy the first three eigenvalues.

(d) Write the corresponding eigenfunctions and the “asymptotic behavior” of the eigenvalues.

(e) Find a series expression for the temperature \(u = u(x,t) \) at any point \(x \) in the rod at any subsequent time \(t \). Although you do not have to evaluate them, be sure to give explicit formulas for the coefficients in your series expression for the temperature function.

(f) Approximate to eight decimal place accuracy the first three coefficients of your series expression.

(g) Truncate your series expression for the temperature to the first three terms and use this to estimate the temperature of the rod at position \(x = 0.5 \) and time \(t = 1.0 \). How accurate is your answer? How do you know this?
(a) Let \(u(x,t) \) denote the temperature of the rod at position \(x \) in \([0,1]\) and time \(t \geq 0 \). Then \(u \) is a solution of the diffusion equation

\[
 u_t - ku_{xx} = 0 \quad \text{in } 0<x<1, \; 0<t<\infty,
\]

where \(k = \frac{K}{\sigma p} = \frac{5.2}{(4.0)(1.3)} = 1 \). Thus \(u \) solves

\[
 \begin{cases}
 u_t - ku_{xx} = 0 & \text{in } 0<x<1, \; 0<t<\infty, \\
 u_x(0,t) = 0 & \text{for } t \geq 0, \\
 u_x(1,t) + \frac{1}{2} u(1,t) & \text{for } t \geq 0, \\
 u(x,0) = 100 & \text{for } 0 \leq x \leq 1.
 \end{cases}
\]

We seek nontrivial solutions of (1)-(2)-(3) of the form \(u(x,t) = X(x)T(t) \).

Thus \(X(x)T'(t) - X''(x)T(t) = 0 \Rightarrow -\frac{X''(x)}{X(x)} = -\frac{T'(t)}{T(t)} = \text{constant} = \lambda \).

\[
 X'(0)T(t) = 0 = X'(1)T(t), \; X''(0) = 0 = X''(1) + \frac{1}{2} X(1), \quad \text{Eigenvalue Problem}
\]

\[
 \begin{cases}
 X''(x) + \lambda X(x) = 0, \\
 X'(0) = 0 = X'(1) + \frac{1}{2} X(1), \\
 T'(t) + \lambda T(t) = 0
 \end{cases}
\]

(b) Case 1: \(\lambda > 0 \), say \(\lambda = \alpha^2 \) where \(\alpha > 0 \).

\[
 X'' + \alpha^2 X = 0 \Rightarrow X(x) = c_1 \cos(\alpha x) + c_2 \sin(\alpha x)
\]

\[
 X'(x) = -\alpha c_1 \sin(\alpha x) + \alpha c_2 \cos(\alpha x)
\]

\[
 0 = X'(0) = \alpha c_2 \Rightarrow c_2 = 0.
\]

\[
 0 = X'(1) + \frac{1}{2} X(1) = -\alpha c_1 \sin(\alpha) + \frac{c_1 \cos(\alpha)}{2} \Rightarrow \tan(\alpha) = \frac{1}{2\alpha}
\]

Eigenvalue condition.

0 nonzero, so solution isn't trivial.
It is clear that there is an infinite sequence of solutions to \(\tan(\alpha) = \frac{1}{2\alpha} \), say \(0 < \alpha_1 < \alpha_2 < \alpha_3 < \ldots \) with the properties \(\alpha_n \in (n\pi, (n+\frac{1}{2})\pi) \) and \(\lim_{n \to \infty} \left[\alpha_n - (n-1)\pi \right] = 0 \). The corresponding eigenfunctions are (up to a constant factor) \(\overline{\Xi}_n(x) = \csc(\alpha_n x) \) with eigenvalues \(\lambda_n = \alpha_n^2 \) for \(n = 1, 2, 3, \ldots \). Note that \(\lim_{n \to \infty} \left[\lambda_n - (n - \frac{1}{2})^2 \pi^2 \right] = 0 \).

(b) Case 2: \(\lambda = 0 \). \(\overline{\Xi}'' = 0 \) \(\Rightarrow \overline{\Xi}'(x) = c_1 \) and \(\overline{\Xi}(x) = c_1 x + c_2 \).

(Cont.) \(0 = \overline{\Xi}'(0) = c_1 \) and \(0 = \overline{\Xi}'(1) = c_1 + \frac{1}{2} (c_1 + c_2) = \frac{1}{2} c_2 \).

No non-trivial solutions exist in this case.

(c) Case 3: \(\lambda < 0 \), say \(\lambda = -\beta^2 \) where \(\beta > 0 \).

\(\overline{\Xi}'' - \beta^2 \overline{\Xi} = 0 \) \(\Rightarrow \overline{\Xi}(x) = c_1 \cosh(\beta x) + c_2 \sinh(\beta x) \)

\(\overline{\Xi}(0) = \beta c_2 \Rightarrow c_2 = 0. \)

\(0 = \overline{\Xi}'(1) = c_1 \sinh(\beta) + \frac{1}{2} c_1 \cosh(\beta) = c_1 \left(\frac{\beta \sinh(\beta)}{2} + \frac{1}{2} \cosh(\beta) \right) \)

positive when \(\beta > 0 \)

\(\Rightarrow c_1 = 0. \)

No non-trivial solutions exist in this case.
For any $n \geq 1$, the solution to $T_n(t) + \lambda_n T_n(t) = 0$ is

$$T_n(t) = e^{-\alpha_n t} e^{-\alpha_n^2 t},$$

up to a constant multiple. The formal series solution to (1-2-3) is $u(x,t) = \sum_{n=1}^{\infty} c_n \cos(\alpha_n x) e^{-\alpha_n^2 t}$, where c_1, c_2, c_3, \ldots are arbitrary constants. In order to satisfy (4), we must choose the constants so that

$$100 = u(x,0) = \sum_{n=1}^{\infty} c_n \cos(\alpha_n x) \quad \text{for } 0 \leq x \leq 1.$$

Since $\{\Xi_n\}_{n=1}^{\infty} = \{\cos(\alpha_n x)\}_{n=1}^{\infty}$ is an orthogonal system on $(0,1)$ (see the claim and its proof on the last page of this homework solution), we may take c_n to be the nth Fourier coefficient of $f(x) = 100$ with respect to the orthogonal system $\{\Xi_n\}_{n=1}^{\infty}$:

$$c_n = \frac{\langle 100, \cos(\alpha_n x) \rangle}{\langle \cos(\alpha_n x), \cos(\alpha_n x) \rangle} = \frac{\int_0^1 100 \cos(\alpha_n x) dx}{\sqrt{\int_0^1 \cos^2(\alpha_n x) dx}} = \frac{100 \sin(\alpha_n)}{\alpha_n} x = 0$$

$$\frac{1}{2} + \frac{\sin(2\alpha_n)}{4\alpha_n}$$

Therefore the solution to (1-2-3-4) is

$$u(x,t) = \sum_{n=1}^{\infty} \frac{400 \sin(\alpha_n) \cos(\alpha_n x) e^{-\alpha_n^2 t}}{2\alpha_n + \sin(2\alpha_n)}.$$
(f) The first three coefficients of the series expansion for the solution obtained in part (e) are:

\[c_1 = \frac{400 \sin(\xi_1)}{2\xi_1 + \sin(2\xi_1)} = \frac{400 \sin(0.653271187094)}{2(0.653271187094) + \sin(2)(0.653271187094)} \]

\[\Rightarrow c_1 = 107.012813694 \]

\[c_2 = \frac{400 \sin(\xi_2)}{2\xi_2 + \sin(2\xi_2)} = \frac{400 \sin(3.29231002128)}{2(3.29231002128) + \sin(2)(3.29231002128)} \]

\[\Rightarrow c_2 = -8.72758410879 \]

\[c_3 = \frac{400 \sin(\xi_3)}{2\xi_3 + \sin(2\xi_3)} = \frac{400 \sin(6.36162039207)}{2(6.36162039207) + \sin(2)(6.36162039207)} \]

\[\Rightarrow c_3 = 2.43347580818 \]

(g) \[u(x, t) = \sum_{k=1}^{3} c_k \cos(\alpha_k x) e^{-\kappa_k^2 t} = u_3(x, t). \]

\[u(\frac{1}{2}, 1) = c_1 \cos(\alpha_1(\frac{1}{2})) e^{-\kappa_1^2} + c_2 \cos(\alpha_2(\frac{1}{2})) e^{-\kappa_2^2} + c_3 \cos(\alpha_3(\frac{1}{2})) e^{-\kappa_3^2} \]

\[= 66.1459365805 + 0.0000128874129845 + -6 \times 10^{-18} \]

\[\Rightarrow 66.145944679 \]
The error in using the first three terms to approximate $u\left(\frac{1}{2}, 1\right)$ is

$$\left| u\left(\frac{1}{2}, 1\right) - u_3\left(\frac{1}{2}, 1\right) \right| = \left| \sum_{n=4}^{\infty} c_n \cos(\kappa_n^{\frac{1}{2}}) e^{-\alpha_n^2} \right|$$

$$\leq \sum_{n=4}^{\infty} |c_n| e^{-\alpha_n^2} \quad \text{(since } |\cos(\kappa_n^{\frac{1}{2}})| \leq 1)$$

But

$$|c_n| = \left| \frac{400 \sin(\kappa_n)}{2\kappa_n + \sin(2\kappa_n)} \right| \leq \frac{400}{2\kappa_n - 1} \leq \frac{400}{2(\kappa_4 - 1)} \leq 22.5\text{, for } n \geq 4.$$

Thus,

$$\left| u\left(\frac{1}{2}, 1\right) - u_3\left(\frac{1}{2}, 1\right) \right| \leq 22.5 \sum_{n=4}^{\infty} e^{-\alpha_n^2}$$

$$< 22.5 \sum_{n=4}^{\infty} (e^{-\alpha_4})^n$$

$$= 22.5 \frac{(e^{-\alpha_4})^4}{1 - e^{-\alpha_4}}$$

$$= \frac{7.73 \times 10^{-16}}{}$$
Claim: The eigenfunctions \(\Xi_n(x) = \cos(\alpha_n x) \) \((n = 1, 2, 3, \ldots) \) form an orthogonal system on \((0, 1)\).

Reason: Note that for each \(n = 1, 2, 3, \ldots \) we have

\[
\Xi_n''(x) + \alpha_n^2 \Xi_n(x) = 0 \quad \text{for} \ 0 \leq x \leq 1, \quad \Xi_n'(0) = 0, \quad \text{and} \quad \Xi_n'(1) + \frac{1}{2} \Xi_n(1) = 0.
\]

Therefore

\[
\langle \Xi_m, \Xi_n \rangle = \int_0^1 \Xi_m(x) \Xi_n(x) \, dx
\]

\[
= \int_0^1 \Xi_m(x) \left(-\Xi_n''(x) \cdot \frac{1}{\alpha_n^2} \right) \, dx
\]

integrate by parts twice

\[
= -\frac{1}{\alpha_n^2} \left(\Xi_m(x) \Xi_n'(x) - \Xi_m'(x) \Xi_n(x) \right) \bigg|_0^1 + \frac{1}{\alpha_n^2} \int_0^1 \Xi_m''(x) \Xi_n(x) \, dx
\]

\[
= -\frac{1}{\alpha_n^2} \left(\Xi_m(1) \Xi_n'(1) - \Xi_m'(1) \Xi_n(1) - \Xi_m(0) \Xi_n'(0) + \Xi_m'(0) \Xi_n(0) \right)
\]

\[
- \frac{1}{\alpha_n^2} \int_0^1 \left(-\alpha_n^2 \Xi_m(x) \right) \Xi_n(x) \, dx
\]

\[
= \frac{\alpha_n^2}{\alpha_n^2} \langle \Xi_m, \Xi_n \rangle.
\]

Therefore \((1 - \frac{\alpha_m^2}{\alpha_n^2})\langle \Xi_m, \Xi_n \rangle = 0\), so if \(m \neq n \)

(and hence \(\alpha_m^2 \neq \alpha_n^2 \)) we must have \(\langle \Xi_m, \Xi_n \rangle = 0 \).