1. Let A and B be subsets of \mathbb{R} with positive Lebesgue measure. Show that $A+B = \{a+b : a \in A, b \in B\}$ contains a nonempty open interval.

2. Let E be a Lebesgue measurable subset of \mathbb{R}. The metric density of E at a real number x is defined to be

$$\lim_{\varepsilon \to 0} \frac{m(E \cap (x-\varepsilon,x+\varepsilon))}{2\varepsilon},$$

provided the limit exists. Show that the metric density of E is 1 for almost every point of E and is 0 for almost every point of the complement of E.

3. Let $1 \leq p < \infty$ and, for $f \in L^p(0,\infty)$, define

$$F(x) = \frac{1}{x} \int_0^x f(t) dt \quad (0 < x < \infty).$$

(a) If $f \geq 0$ and $f \in L^p(0,\infty)$ for some $1 < p < \infty$, show that

$$\int_0^x F^p(x) dx = -p \int_0^x F^{p-1}(x) x F'(x) dx = -p \int_0^x F^{p-1}(x)(f(x) - F(x)) dx.$$

(b) If $f \in L^p(0,\infty)$ for some $1 < p < \infty$, show that $\|F\|_p \leq \frac{p}{p-1} \|f\|_p$.

(c) Show that the inequality in part (b) is sharp by considering the function

$$f(x) = \begin{cases} x^{-\frac{1}{p}} & \text{if } 1 \leq x \leq A, \\ 0 & \text{otherwise}, \end{cases}$$

for large A.

(d) If $f \geq 0$ and $f \in L^1(0,\infty)$, show that it is possible that $F \notin L^1(0,\infty)$.

4. Let $f \in L^p(0,1)$ for some $p > 0$. For $t \geq 0$, let $E_t = \{x \in (0,1) : |f(x)| > t\}$ and let $m_r(t)$ denote the Lebesgue measure of the set E_t.

(a) Show that $h(x,t) = t^{-p} x^p_0$ is a measurable function on $(0,1) \times (0,\infty)$.

(b) Show that $\int_0^1 |f(x)|^p dx = p \int_0^\infty m_r(t) dt$.

(c) Use part (b) to show that $f \in L^p(0,1)$ if and only if $\sum_{r=1}^\infty m(\{x \in (0,1) : |f(x)|^p \geq r\}) < \infty$.

5. In this problem, define $\ln(0)$ as $-\infty$ and $\exp(-\infty)$ as 0, and let $f \in L^p(0,1)$ for all $p > 0$.

(a) Show that $\ln(t) \leq t-1$ if $0 \leq t < \infty$.

(b) Replace t by $|f(x)|/\|f\|_p$ in the inequality of part (a) and integrate over $(0,1)$. What inequality
results?

(c) Show that for each \(t \in [0, \infty) \), \(\frac{t^r - 1}{r} \) decreases to \(\ln(t) \) as \(r \to 0^+ \).

(d) Is it true that \(\lim_{r \to 0^+} \frac{\int_0^1 |f(x)|^r \, dx - 1}{r} = \int_0^1 \ln |f(x)| \, dx \)? Explain.

(e) Prove or disprove: \(\lim_{r \to 0^+} \|f\|_r = \exp \left(\int_0^1 \ln |f(x)| \, dx \right) \).

6. Let \(m \) denote Lebesgue measure on \((0, \infty) \). For any Lebesgue measurable subset \(E \) of \((0, \infty) \), define

\[
\mu_1(E) = \sum_{n=1}^{\infty} \frac{1}{n^2} \int_{E \cap (n,n+1]} x \, dm,
\]

\[
\mu_2(E) = \int_{E \cap (0,\infty)} \frac{1}{x} \, dm.
\]

Is \(m \) absolutely continuous with respect to \(\mu_2 \)? Is \(\mu_2 \) absolutely continuous with respect to \(\mu_1 \)? Explain why or why not, and find the corresponding Radon-Nikodym derivatives, if they exist.

7. Let \((X, \Sigma, \mu) \) be a finite measure space, and \(S \) denote the set of (equivalence classes of) measurable real functions on \(X \). (As usual, we will say that two real measurable functions on \(X \) are equivalent if they agree almost everywhere with respect to \(\mu \).) For \(f \) and \(g \) in \(S \), define

\[
d(f, g) = \int \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} \, d\mu(x).
\]

Show that \(d \) is a metric on \(S \) and that \(f_n \to f \) in this metric if and only if \(f_n \to f \) in measure.