Exercises for Fourier Transform Methods for Solving PDE's

1. (a) Use Fourier transform methods to derive d'Alembert's solution to the initial value problem for the 1-D wave equation

\[u_{tt} - c^2 u_{xx} = 0 \quad \text{for} \quad -\infty < x < \infty, \quad -\infty < t < \infty, \]
\[u(x,0) = \phi(x) \quad \text{and} \quad u_t(x,0) = \psi(x) \quad \text{for} \quad -\infty < x < \infty. \]

(b) What assumptions on \(\phi \) and \(\psi \) do you make in order for the derivation in part (a) to be rigorous?

2. Solve problem # 16 in Sec. 2.4 by Fourier transform methods.

3. Solve problem # 17 in Sec. 2.4 by Fourier transform methods.

4. Solve problem # 18 in Sec. 2.4 by Fourier transform methods.

5. Let \(f \) be a piecewise-continuous absolutely integrable function on \(-\infty < x < \infty \).

(a) Use Fourier transform methods to solve the 2-D Laplace equation

\[u_{xx} + u_{yy} = 0 \quad \text{in the upper halfplane} \quad -\infty < x < \infty, \quad 0 < y < \infty \]

subject to the boundary condition
\[u(x,0) = f(x) \quad \text{for} \quad -\infty < x < \infty \]

and the decay condition
\[u(x,y) \to 0 \quad \text{as} \quad x^2 + y^2 \to \infty. \]

(b) Let \(f(x) = \begin{cases} 1 & \text{if } |x| < 1, \\ 0 & \text{otherwise}. \end{cases} \) Compute an explicit formula for the solution \(u = u(x,y) \) in part (a).
Exercises for Fourier Transform Methods

1. (a) Use Fourier transform methods to derive d'Alembert's solution to the initial value problem for the one-dimensional wave equation

\[u_{tt} - c^2 u_{xx} = 0 \quad \text{for} \quad -\infty < x < \infty, \quad -\infty < t < \infty, \]

\[u(x,0) = f(x) \quad \text{and} \quad u_t(x,0) = g(x) \quad \text{for} \quad -\infty < x < \infty. \]

(b) What assumptions on \(f \) and \(g \) do you make in order for the derivation in part (a) to be rigorous?

He will make use of the following result in part (a).

FACT: Let \(f \) be a piecewise-continuous absolutely integrable function on \((-\infty, \infty)\) such that \(\hat{f}(0) = 0 \), and let

\[F(x) = \int_{-\infty}^{x} f(y) \, dy, \quad x \in (-\infty, \infty). \]

Then \(\hat{F}(\xi) = \frac{\hat{f}(\xi)}{i\xi} \) for \(\xi \neq 0 \).

Proof of FACT: If \(\xi \to 0 \) then

\[\hat{F}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(x) e^{-ix\xi} \, dx \]

\[= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{x} f(y) \, dy \right) e^{-ix\xi} \, dx \]

\[= \frac{1}{\sqrt{2\pi}} \left[\left(\int_{-\infty}^{\infty} f(y) \, dy \right) e^{-i\xi x} \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} e^{-i\xi x} \hat{f}(x) \, dx \]

But \(\lim_{x \to -\infty} \int_{x}^{\infty} f(y) \, dy = 0 \), \(\lim_{x \to \infty} \int_{-\infty}^{x} f(y) \, dy = \int_{-\infty}^{\infty} f(y) \, dy = 0 \),

and \(\left| \frac{e^{-i\xi x}}{-i\xi} \right| = \frac{1}{\xi} \) for all real \(x \). It follows that...
1. (cont.) \[\hat{F}(\xi) = \frac{1}{i\xi} \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-i\xi x} \, dx = \frac{\hat{f}(\xi)}{i\xi} \].

(a) \[\hat{f}(u_{tt} - c^2 u_{xx}) = \hat{f}(0) \]

\[\frac{\partial^2}{\partial t^2} \hat{f}(u) + c^2 \frac{\partial^2}{\partial x^2} \hat{f}(u) = 0 \]

\[\hat{f}(u) = c_1(\xi) \cos(c \xi t) + c_2(\xi) \sin(c \xi t) \]

\[\hat{\phi}(\xi) = \hat{f}(u(\cdot, 0)) = c_1(\xi) \]

\[\hat{\psi}(\xi) = \left. \frac{\partial}{\partial t} \hat{f}(u) \right|_{t=0} = -c_3 c_1(\xi) \sin(c \xi t) + c_3 c_2(\xi) \cos(c \xi t) \]

\[\hat{\psi}(\xi) = c_3 c_2(\xi) \]

\[\therefore \hat{f}(u) = \hat{\phi}(\xi) \cos(c \xi t) + \frac{\hat{\psi}(\xi)}{i c_3 \xi} \sin(c \xi t) \]

\[= \frac{1}{2} \hat{\phi}(\xi) e^{ic \xi t} + \frac{1}{2} \hat{\phi}(\xi) e^{-ic \xi t} + \frac{\hat{\psi}(\xi)}{i c_3 \xi} \left(\frac{e^{ic \xi t} - e^{-ic \xi t}}{2i} \right) \]

\[= \frac{1}{2} \hat{\phi}(\xi) e^{ic \xi t} + \frac{1}{2} \hat{\phi}(\xi) e^{-ic \xi t} + \frac{1}{2c} \hat{\psi}(\xi) e^{ic \xi t} - \frac{1}{2c} \hat{\psi}(\xi) e^{-ic \xi t} \]

If \[\overline{F}(x) = \int_{-\infty}^{\infty} F(y) dy \] then \(\hat{\overline{F}}(\xi) = \frac{\hat{F}(\xi)}{i \xi} \) by FACT. Thus

\[\hat{F}(u) = \frac{1}{2} \hat{\phi}(\xi) e^{ic \xi t} + \frac{1}{2} \hat{\phi}(\xi) e^{-ic \xi t} + \frac{1}{2c} \hat{\psi}(\xi) e^{ic \xi t} - \frac{1}{2c} \hat{\psi}(\xi) e^{-ic \xi t} \]

Fix the time \(t \) by the "shifting on the x-axis" result (#4 on the Exercises for Fourier Transforms),

\[f_1(x) = \phi(x + ct) \] has Fourier transform \(\hat{f}_1(\xi) = e^{ic \xi t} \hat{\phi}(\xi) \);

\[f_2(x) = \phi(x - ct) \] " " " " \(\hat{f}_2(\xi) = e^{-ic \xi t} \hat{\phi}(\xi) \);
Exercises for Fourier Transform Methods (cont.)

\[g_1(x) = \mathcal{F}(x+ct) \] has Fourier transform \[\hat{g}_1(\xi) = e^{isct} \mathcal{F}(\xi); \]
\[g_2(x) = \mathcal{F}(x-ct) \] \[\hat{g}_2(\xi) = e^{-isct} \mathcal{F}(\xi). \]

Substituting these relations into (*) gives

\[\mathcal{F}(u) = \mathcal{F}
\left(\frac{1}{2} f_1 + \frac{1}{2} f_2 + \frac{1}{2c} g_1 - \frac{1}{2c} g_2 \right), \]

and the uniqueness theorem implies (for fixed \(t \) and any real \(x \))

\[u(x,t) = \frac{1}{2} f_1(x) + \frac{1}{2} f_2(x) + \frac{1}{2c} g_1(x) - \frac{1}{2c} g_2(x) \]

\[= \frac{1}{2} \mathcal{F}(x+ct) + \frac{1}{2} \mathcal{F}(x-ct) + \frac{1}{2c} \mathcal{F}(x+ct) - \frac{1}{2c} \mathcal{F}(x-ct) \]

\[= \frac{1}{2} \left[\mathcal{F}(x+ct) + \mathcal{F}(x-ct) \right] + \frac{1}{2c} \left[\int_{-\infty}^{x+ct} \mathcal{F}(y) dy - \int_{-\infty}^{x-ct} \mathcal{F}(y) dy \right]. \]

\[u(x,t) = \frac{1}{2} \left[\mathcal{F}(x+ct) + \mathcal{F}(x-ct) \right] + \frac{1}{2c} \int_{x-ct}^{x+ct} \mathcal{F}(y) dy \]

(b) In order for the function \(u = u(x,t) \) above to satisfy the P.D.E., it is clear that we must have \(\mathcal{F} \in C^2(-\infty, \infty) \) and \(f \in C^1(-\infty, \infty) \). In the derivation by Fourier transform methods in part (a), we applied FACT with \(f = \mathcal{F} \). Therefore, \(\mathcal{F} \) must be absolutely integrable on \((-\infty, \infty) \). Since we take the Fourier transform of \(\mathcal{F} \), it is natural to require that \(\mathcal{F} \) be absolutely integrable on \((-\infty, \infty) \). Finally, we interchange integration and differentiation when we write \(\frac{\partial^2}{\partial t^2} \mathcal{F}(u) = \mathcal{F}(u_{tt}) \). Thus, by
1(b) (cont.) Theorem 2 of A.3 (see p. 390), it is natural to require that ϕ'' and ψ' be absolutely integrable on $(-\infty, \infty)$.

2. Solve problem 416 in Sec. 2.4 by Fourier Transform methods.

"Solve the diffusion equation with constant dissipation:

$$u_t - ku_{xx} + bu = 0 \quad \text{for } -\infty < x < \infty, \ 0 < t < \infty,$$

with $u(x, 0) = \phi(x)$ for $-\infty < x < \infty$. Here $b > 0$ is constant."

Taking the Fourier transform of both sides of the PDE with respect to the variable x yields

$$\mathcal{F}(u_t - ku_{xx} + bu) = \mathcal{F}(0)$$

$$\frac{2}{\pi} \mathcal{F}(u) - k(-s^2)\mathcal{F}(u) + b\mathcal{F}(u) = 0.$$

$$\therefore \mathcal{F}(u) = c(s)e^{-(-k s^2 + b)t}.$$

$$\mathcal{F}(\phi) = \mathcal{F}(u(\cdot, 0)) = c(s)e^0 = c(s),$$

$$\therefore \mathcal{F}(u) = \mathcal{F}(\phi)e^{-(-k s^2 + b)t}.$$

Using formula I in the Table of Fourier Transforms with $kt = \frac{1}{4a}$ yields

$$\frac{1}{\sqrt{2\pi kt}} \mathcal{F}(e^{-\frac{(s)^2}{4kt}}) e^{-bt} = \frac{1}{\sqrt{2\pi kt}} e^{-\frac{-k t s^2 - bt}{\sqrt{2kt}}} e^{-(k s^2 + b)t}$$

Substituting this expression into (*) produces...
2. (cont.) \(\mathcal{F}(u)_t = \mathcal{F}(q) \frac{1}{\sqrt{2\pi kt}} \mathcal{F} \left(e^{-\frac{(\cdot)^2}{4kt}} \right) e^{-bt} \)

\[
= e^{-bt} \frac{1}{\sqrt{2\pi}} \mathcal{F} \left(q \star e^{-\frac{(\cdot)^2}{4kt}} \right)
\]

\[
= \mathcal{F} \left(\frac{e^{-bt}}{\sqrt{4kt}} \right) q \star e^{-\frac{(\cdot)^2}{4kt}}
\]

By the uniqueness theorem (for fixed \(t > 0 \) and any real \(x \)) it follows that

\[
u(x, t) = \frac{e^{-bt}}{\sqrt{4\pi kt}} (q \star e^{-\frac{(\cdot)^2}{4kt}})(x),
\]

i.e.

\[
u(x, t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4kt}} q(y) \, dy
\]

3. Solve problem #17 in Sec. 2.4 by Fourier transform methods.

"Solve the diffusion equation with variable dissipation:

\[
u_t - ku_{xx} + bt \nu = 0
\]

for \(-\infty < x < \infty, \ 0 < t < \infty, \) with \(u(x, 0) = q(x) \) for \(-\infty < x < \infty; \)

here \(b > 0 \) is a constant."

Taking the Fourier transform (with respect to \(x \)) of both sides of the PDE yields

\[
\mathcal{F}(u_t) - k \mathcal{F}(u_{xx}) + bt^2 \mathcal{F}(u) = 0
\]

\[
\frac{2}{\partial t} \mathcal{F}(u) - k(i\xi)^2 \mathcal{F}(u) + bt^2 \mathcal{F}(u) = 0
\]
Exercises for Fourier Transform Methods (cont.)

3. (cont.) \(\frac{\partial^2 F(u)}{\partial t^2} + (k^2 u^2 + bt^2) F(u) = 0 \).

Separating variables and integrating produces

\[\ln F(u) = -k^2 t - \frac{bt^3}{3} + c(s) \]

or

\[F(u) = A(s) e^{\frac{-k^2 t^2}{3} - \frac{bt^3}{3}}. \]

(where \(A(s) = e^{c(s)} \)).

Applying the initial condition we have

\[F(\phi) = F(u(\cdot, 0)) = A(s) e^0 = A(s) \]

so

\[F(u) = F(\phi) e^{\frac{-k^2 t^2}{3} - \frac{bt^3}{3}}. \]

Applying formula 1: \(F(e^{-a(\cdot)^2}) = \frac{e^{-\frac{a^2}{4a}}}{\sqrt{2a}} \), with \(kT = \frac{1}{4a} \) (that is, \(a = \frac{1}{4kt} \)) gives \(F(e^{-\frac{c^2}{4kt}}) = \sqrt{2kt} e^{\frac{-k^2 t^2}{3}} \). Substituting this expression into (†), we find

\[F(u) = F(\phi) F(e^{-\frac{c^2}{4kt}}) \cdot \frac{e^{-\frac{bt^3}{3}}}{\sqrt{2kt}}. \]

Using the convolution formula \(F(f * g) = \sqrt{2\pi} F(f) F(g) \) we have

\[F(u) = \frac{1}{\sqrt{2\pi}} F(\phi * e^{-\frac{c^2}{4kt}}) \cdot e^{\frac{-k^2 t^2}{3}} \]

\[= F(\frac{e^{-\frac{kT^2}{3}}}{\sqrt{4\pi KT}} \phi * e^{-\frac{c^2}{4kt}}). \]

By the uniqueness theorem (for fixed \(t > 0 \) and any real \(x \))

\[u(x, t) = \frac{e^{-bt^3/3}}{\sqrt{4\pi KT}} \phi * e^{-\frac{c^2}{4kt}}(x) \]

i.e.

\[u(x, t) = \frac{e^{-bt^3/3}}{\sqrt{4\pi KT}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4kt}} \phi(y) dy. \]
Exercises for Fourier Transform Methods (cont.)

4. Solve problem #18 in Sec. 2.4 by Fourier transform methods.

"Solve the heat equation with convection:

\[u_t - ku_{xx} + V u_x = 0 \quad \text{for} \ -\infty < x < \infty, \ 0 < t < \infty, \]

with \(u(x,0) = f(x) \) for \(-\infty < x < \infty\), where \(V \) is a constant."

Taking the Fourier transform (with respect to \(x \)) of the PDE yields

\[
\mathcal{F}(u_t) - k \mathcal{F}(u_{xx}) + V \mathcal{F}(u_x) = 0
\]

\[
\frac{\partial \mathcal{F}(u)}{\partial t} - k(i\xi)^2 \mathcal{F}(u) + V(i\xi) \mathcal{F}(u) = 0
\]

\((\dagger)\)

\[
\frac{\partial}{\partial t} \mathcal{F}(u) + (k\xi^2 + iV\xi) \mathcal{F}(u) = 0.
\]

An integrating factor for this linear first-order equation in \(t \) (for fixed \(\xi \)) is

\[
\int (k\xi^2 + iV\xi) dt = e^{(k\xi^2 + iV\xi)t}.
\]

Multiplying \((\dagger)\) by the integrating factor and using the product rule for derivatives gives

\[
\frac{\partial}{\partial t} \left\{ \mathcal{F}(u) e^{(k\xi^2 + iV\xi)t} \right\} = 0,
\]

and algebra

whereupon integration yields

\[
\mathcal{F}(u) = c(\xi) e^{(k\xi^2 + iV\xi)t}.
\]

Applying the initial condition, we have

\[
\mathcal{F}(f) = \mathcal{F}(u(\cdot,0)) = c(\xi) e^{0} = c(\xi).
\]

Thus \((\dagger)\) \(\mathcal{F}(u) = \mathcal{F}(f) \cdot e^{-\frac{k\xi^2}{2} - iVt\xi} \).
Exercises for Fourier Transform Methods (cont.)

4. (cont.) As in problems 2 and 3, \(\mathcal{F}(e^{-\frac{(\cdot)^2}{4kt}}) = \sqrt{2k\pi} e^{-\frac{ktx^2}{4}} \), so substituting in (*) we have

\[
\mathcal{F}(u) = \mathcal{F}(\varphi) \mathcal{F}\left(\frac{1}{\sqrt{2k\pi}} e^{-\frac{(\cdot)^2}{4kt}} \right) e^{-i\sqrt{Vt} \cdot \varphi},
\]

and using the convolution formula as in problems 2 and 3,

\[
(\ast\ast) \quad \mathcal{F}(u) = e^{-i\sqrt{Vt} \cdot \varphi} \mathcal{F}\left(\frac{1}{\sqrt{4\pi kt}} e^{-\frac{(\cdot)^2}{4kt}} \ast \varphi \right).
\]

Applying the shifting formula on the x-axis (\#4 on Exercises for Fourier Transforms): \(\mathcal{F}(f(\cdot-a)) = e^{-i\sqrt{\pi}a} \mathcal{F}(\varphi) \), with \(a = Vt \), (\ast\ast) becomes

\[
\mathcal{F}(u) = \mathcal{F}\left(\frac{1}{\sqrt{4\pi kt}} e^{-\frac{(\cdot-Vt)^2}{4kt}} \ast \varphi \right).
\]

The uniqueness theorem then implies (for fixed \(t > 0 \) and any real \(x \))

\[
u(x,t) = \frac{1}{\sqrt{4\pi kt}} (e^{-\frac{(x-Vt)^2}{4kt}} \ast \varphi)(x)
\]

i.e.

\[
u(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y-Vt)^2}{4kt}} \varphi(y) \, dy.
\]

5. Let \(f \) be an absolutely integrable, piecewise-continuous function on \(-\infty < x < \infty\).

(a) Use Fourier transform methods to solve the 2-D Laplace equation \(u_{xx} + u_{yy} = 0 \) in the upper halfplane \(-\infty < x < \infty, 0 < y < \infty\), subject to the boundary condition \(u(x,0) = f(x) \) for \(-\infty < x < \infty\) and
Exercises for Fourier Transform Methods (cont.)

5. (cont.) the decay condition \(u(x, y) \to 0 \) as \(x^2 + y^2 \to \infty \).

(b) Let
\[
\begin{align*}
f(x) &= \begin{cases}
1 & \text{if } |x| < 1, \\
0 & \text{otherwise}.
\end{cases}
\end{align*}
\]

Compute an explicit formula for the solution \(u = u(x, y) \) in part (a).

(a) We take the Fourier transform (with respect to \(x \)) of the PDE:
\[
\mathcal{F}(u_{xx}) + \mathcal{F}(u_{yy}) = 0
\]
\[
-\xi^2 \mathcal{F}(u) + \frac{\partial^2}{\partial y^2} \mathcal{F}(u) = 0.
\]

(4)
\[
\mathcal{F}(u) = c_1(\xi) e^{\xi y} + c_2(\xi) e^{-\xi y}.
\]

Applying the boundary condition yields

(5)
\[
\mathcal{F}(f)(\xi) = \mathcal{F}(u(., 0))(\xi) = c_1(\xi) e^0 + c_2(\xi) e^0 = c_1(\xi) + c_2(\xi)
\]

for \(-\infty < \xi < \infty\). The decay condition implies

(6)
\[
0 = \lim_{|y| \to \infty} \mathcal{F}(u) = \lim_{|y| \to \infty} \left(c_1(\xi) e^{\xi y} + c_2(\xi) e^{-\xi y} \right)
\]

for \(-\infty < \xi < \infty\).

Suppose \(\xi > 0 \); let \(y \to +\infty \) in (6) and observe that we must have \(c_1(\xi) = 0 \) if (6) is to be satisfied. Suppose \(\xi < 0 \); let \(y \to +\infty \) in (6) and observe that this time we must have \(c_2(\xi) = 0 \). Using these relations in conjunction with (5) yields

(7)
\[
c_1(\xi) = \begin{cases}
\mathcal{F}(f)(\xi) & \text{if } \xi < 0, \\
0 & \text{if } \xi > 0,
\end{cases}
\]
\[
c_2(\xi) = \begin{cases}
0 & \text{if } \xi < 0, \\
\mathcal{F}(f)(\xi) & \text{if } \xi > 0.
\end{cases}
\]
Exercises for Fourier Transform Methods (cont.)

5. (cont.) By (t) and (ttt),

\[F(u) = \begin{cases}
\mathcal{F}(f)(\xi) e^{i\xi y} & \text{if } \xi < 0, \\
\mathcal{F}(f)(\xi) e^{-i\xi y} & \text{if } \xi > 0,
\end{cases} \]

or equivalently,

\[(\text{tttt}) \quad F(u) = \mathcal{F}(f)(\xi) e^{-|\xi|y}. \]

Applying formula C for Fourier transforms:

\[\mathcal{F}\left(\frac{1}{(\cdot)^2 + a^2} \right) = \sqrt{\frac{\pi}{2}} \frac{e^{-a|\xi|}}{a} \]

with \(a = y > 0 \), we find that \(\mathcal{F}\left(\frac{\sqrt{\frac{2}{\pi}} \cdot y}{(\cdot)^2 + y^2} \right) = e^{-|\xi|y} \).

Substituting in (tttt) and using the convolution formula

\[\mathcal{F}(f \ast g) = \sqrt{2\pi} \mathcal{F}(f) \mathcal{F}(g), \]

we have

\[F(u) = \mathcal{F}(f) \mathcal{F}\left(\frac{\sqrt{\frac{2}{\pi}} \cdot y}{(\cdot)^2 + y^2} \right) = \sqrt{\frac{\pi}{2}} \mathcal{F}\left(f \ast \frac{\sqrt{\frac{2}{\pi}} \cdot y}{(\cdot)^2 + y^2} \right), \]

whereupon the uniqueness theorem (for fixed \(y > 0 \) and all real \(x \)) gives

\[u(x,y) = \frac{1}{\pi} \left(f \ast \frac{y}{(\cdot)^2 + y^2} \right)(x) \]

i.e.

\[u(x,y) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y f(s) \, ds}{(x-s)^2 + y^2}. \]

(b) If \(f(x) = \begin{cases}
1 & \text{if } |x| < 1, \\
0 & \text{otherwise},
\end{cases} \)

then the solution to the problem in part (a) is
5. (cont.)
\[u(x, y) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y f(s) ds}{(x-s)^2 + y^2} = \frac{1}{\pi} \int_{-1}^{1} \frac{y \cdot 1 ds}{(x-s)^2 + y^2} \]

\[= \frac{1}{\pi} \int_{-1}^{1} \frac{\frac{y}{y} ds}{(x-s)^2 + 1} \cdot \text{Let } p = \frac{s-x}{y}. \text{ Then } dp = \frac{1}{y} ds \text{ so} \]

\[u(x, y) = \frac{1}{\pi} \int_{-1}^{1} \frac{dp}{p^2 + 1} = \frac{1}{\pi} \left[\text{Arctan} \left(\frac{1-x}{y} \right) - \text{Arctan} \left(\frac{-1-x}{y} \right) \right]. \]

\[\therefore \quad u(x, y) = \frac{1}{\pi} \left[\text{Arctan} \left(\frac{1-x}{y} \right) + \text{Arctan} \left(\frac{1+x}{y} \right) \right]. \]