4. \(f(x) = \frac{x}{x^2 + 1} \quad f(0) = \frac{0}{1} = 0 \quad f(1) = \frac{1}{2} = \frac{1}{2} \quad f(-1) = \frac{-1}{2} = \frac{-1}{2} \)

6. \(g(u) = \frac{u}{u + 1} \quad g(0) = \frac{0}{1} = 0 \quad g(-1) = \frac{-1}{0} \quad g(2) = \frac{2}{3} = \frac{2}{3} \)

8. \(g(x) = 4 + 1x \quad g(-2) = 4 - 2 = 2 \quad g(0) = 4 + 0 = 4 \quad g(2) = 4 + 2 = 6 \)

10. \(h(x) = \begin{cases} \sqrt{x + 4} & x \geq 1 \\ x^2 + 1 & x > 1 \end{cases} \quad h(3) = \sqrt{3 + 4} = 10 \quad h(0) = \sqrt{0 + 4} = 4 \quad h(-3) = (-3)^2 + 1 = 10 \)

14. \(f(t) = \frac{t + 1}{t^2 - t - 2} \) Domain is all real numbers \(t \) so that denom \(\neq 0 \).

\(t^2 - t - 2 \neq 0 \)

\((t - 2)(t + 1) \neq 0 \)

Domain is all real \(t \) except \(t = 2, t = -1 \).

16. \(g(x) = \sqrt{2x - 6} \) Domain is all real \(x \) so that inside \(\sqrt{\ } \) is \(\geq 0 \).

\(2x - 6 \geq 0 \)

\(2x \geq 6 \)

\(x \geq 3 \) Domain is all \(x \geq 3 \).

24. \(f(u) = (2u + 10)^2 \quad g(x) = x\cdot -5 \)

\(f(g(x)) = f(x\cdot -5) \)

\(= (2(x\cdot -5) + 10)^2 \)

\(= (2x - 10 + 10)^2 \)

\(= (2x)^2 \)

\(= 4x^2 \)

38. \(f(x) = 3x + \frac{2}{x} \) Find \(f(\frac{1}{x}) \).

\(f(x) = 3(\frac{1}{x}) + \frac{2}{(\frac{1}{x})} = \frac{3}{x} + 2x \)

\(f(\frac{1}{x}) = \frac{3}{x} + 2x \).
Chapter 1, Section 1

44. \(f(x) = \sqrt{3x-5} \). If \(g(x) = \sqrt{x} \) and \(h(u) = 3u - 5 \), then
\[
g(h(x)) = g(3x-5) = \sqrt{3x-5} = f(x).
\]

48. \(C(g) = g^3 - 30g^2 + 400g + 500 \).

Cost for first 20 units is \(C(20) = 20^3 - 30(20)^2 + 400(20) + 500 \)
\[= 4500. \]

Cost of the 20th unit is \(C(20) - C(19) = 4500 - 19^3 - 30(19)^2 + 400(19) + 500 \)
\[= 371. \]

52. \(f(n) = 3 + \frac{12}{n} \), \(n = \text{trial #} \), \(f(n) = \text{time to finish maze on nth trial} \).

a) theoretical domain is all \(n \neq 0 \).
b) practical domain is all integers \(n > 0 \), \(n \), so \(n = 1, 2, 3, \ldots \)
negative numbered trials, trial number zero, fractions, don't make sense.
c) on the third trial, time was \(f(3) = 3 + \frac{12}{3} = 7 \) minutes.
d) notice that as \(n \) gets larger, \(\frac{12}{n} \) gets smaller, so time decreases with each trial. The 12th trial is completed in \(f(12) = 3 + \frac{12}{12} = 4 \) minutes, so \(n = 12 \) is the first to finish in 4 minutes or less.
e) in part(d), we noticed \(f(n) \) consistently decreases with each trial. Time never reaches 3 minutes (always \(3 + \text{something} \)), but we can get as close as we like to 3 minutes by doing more & more trials.
Chapter 1, Section 2

6. \(f(x) = 2x - 1 \)
 \(x\)-int: \((\frac{1}{2}, 0) \)
 \(y\)-int: \((0, -1) \)

8. \(f(x) = \sqrt{x} \)
 \(x\)-int: \((0, 0) \)
 \(y\)-int: \((0, 0) \)

10. \(f(x) = \begin{cases}
 x^2 - 1 & x \leq 2 \\
 3 & x > 2
 \end{cases} \)
 \(x\)-int: \((-1, 0) \) and \((1, 0) \)
 \(y\)-int: \((0, -1) \)

14. \(f(x) = x^2 + 2x - 8 \) (parabola)
 \(y\)-int: \(y = 0 + 0 - 8 = -8 \) \((0, -8) \)
 \(x\)-int: \(0 = x^2 + 2x - 8 \)
 \(0 = (x + 4)(x - 2) \)
 \((-4, 0) \) and \((2, 0) \)
 vertex at \(x = -\frac{b}{2a} = -1 \)
 If \(x = -1 \), \(y = (-1)^2 + 2(-1) - 8 = -9 \)
 \((-1, -9) \)
 opens up.
Chapter 1, Section 2

20. Find intersection points of \(y = x^2 \) and \(y = 2x + 2 \).

If \((x, y)\) is an intersection point, it's on both graphs and satisfies both equations, so \(y = x^2 = 2x + 2 \).

\[
x^2 = 2x + 2, \quad x^2 - 2x - 2 = 0
\]

Use quadratic formula: \(x = \frac{-(-2) \pm \sqrt{4 + 8}}{2} = \frac{2 \pm 2\sqrt{3}}{2} = 1 \pm \sqrt{3}.
\]

If \(x = 1 + \sqrt{3} \), \(y = 2(1 + \sqrt{3}) + 2 = 4 + 2\sqrt{3} \)

If \(x = 1 - \sqrt{3} \), \(y = 2(1 - \sqrt{3}) + 2 = 4 - 2\sqrt{3} \).

Intersection points: \((1 + \sqrt{3}, 4 + 2\sqrt{3})\), and \((1 - \sqrt{3}, 4 - 2\sqrt{3})\).

32. \(y = x^2 \), \(y = x^2 + 3 \)

a) Second graph looks just like first one, only moved up 3 units.

b) Graph of \(y = x^2 - 5 \) looks like first one moved down 5 units.

c) If \(g(x) = f(x) + c \), g's graph looks like f's graph, only moved up c units.

34. \(y = x^2 \), \(y = (x - 2)^2 \)

a) And is first moved forward 2 units

b) \(y = (x+1)^2 \) looks like first moved back 1 unit.

c) If \(g(x) = f(x-c) \), g looks like f moved forward c units.
Chapter 1, Section 3

4. \((5, -1)\) and \((-2, -1)\). \(m = \frac{-1 - (-1)}{-2 - 5} = \frac{0}{-7} = 0\).

8. \(y = 5x + 2\)
 - Slope \(m = 5\)
 - \(y\)-int: \((0, 2)\)
 - \(x\)-int: \((-\frac{2}{5}, 0)\)

12. \(2x - 4y = 12\)
 - \(4y = 2x - 12\)
 - \(y = \frac{1}{2}x - 3\)
 - Slope \(m = \frac{1}{2}\)
 - \(y\)-int: \((0, -3)\)
 - \(x\)-int: \((6, 0)\)

20. \((-1, 2)\), \(m = \frac{2}{3}\).
 - \(y - 2 = \frac{2}{3}(x + 1)\)
 - \(y = \frac{2}{3}x + \frac{8}{3}\)

24. \((2, 5)\), parallel to \(y\)-axis:
 - \(x = 2\)

30. \((1, 5)\) and \((1, -4)\)
 - \(m = \frac{-4 - 5}{1 - 1} = \frac{-9}{0}\) undefined. \(x = 1\)

34. Through \((-\frac{1}{3}, 1)\), perp. to \(2x + 5y = 3\)
 - \(5y = -2x + 3\)
 - \(y = \frac{-2}{5}x + \frac{3}{5}\) \(\rightarrow \text{Our slope is } m = \frac{5}{2}\).
 - \(y - 1 = \frac{5}{2}(x + \frac{1}{3})\)
 - \(y = \frac{5}{2}x + \frac{9}{2} \)
Chapter 1, Section 3

36. $35 per day + .55 per mile.
 a) Let \(x \) = # miles, then amount in a day is
 \[C(x) = 35 + .55x. \]
 b) \(C(50) = 35 + .55(50) \)
 \[= 35 + 27.50 \]
 \[= 62.50 \]
 c) \(72 = 35 + .55x \)
 \[37 = .55x \]
 \[67.27 = x \]
 67.27 miles, approx.

40. At year 0, value is $20,000. At year 10, value is $1000.
 (10, 20000), (10, 1000).
 a) \(m = \frac{10000 - 20000}{10 - 0} = \frac{-10000}{10} = -1000 \)
 \[y - 20000 = -1000(x - 0) \]
 \[y = -1000x + 20000 \]
 b) \(y = -1000(4) + 20000 \)
 \[= 10,400 \]
 c) When is \(y = 0? \)
 \[0 = -1000x + 20000 \]
 \[1000x = 20000 \]
 \[x = 10,526 \text{ years} \]
 (discuss factors in deciding to sell equip.)
Chapter 1, Section 3

48. Ethyl alcohol is metabolized at a rate of 10 ml/hour.

a) \[\text{1 liter beer} \times \frac{1000 \text{ml}}{1 \text{liter}} \times \frac{0.03 \text{g alcohol}}{1 \text{g alcohol}} \times \frac{1 \text{hour}}{1 \text{hour}} = 3 \text{ hours to metabolize} \]

b) Time to metabolize = \[\frac{\text{A ml alcohol}}{10 \text{ ml alcohol}} \times \frac{1 \text{ hour}}{1 \text{ hour}} = \frac{A}{10} \]

c) (Discuss) if party is 4 hours long, maybe 30 ml ethyl alcohol could be allowed so it's mostly metabolized when party is over (30 ml ethyl alcohol is 1 liter of beer).