You have 50 minutes to complete this test. You must *show all work* to receive full credit. Work any 6 of the following 7 problems. Clearly **CROSS OUT** the problem you do not wish me to grade. Each problem is worth 16 points, and you get 4 points for free, for a total of 100 points. The answers will be posted on the electronic reserves later today.

1. Find the area of the region bounded by the curves $y = 8 - x^2$, $y = x^2$, and $y = 7x$ in the first quadrant. Be sure to sketch a graph first! The region should use all three functions as its edges, and only be located in the first quadrant.

2. For $f(x, y) = 8x^3 + 2x^2y^2 + 5y^4$, show that $f_{xy}(x, y) = f_{yx}(x, y)$.
3. Find and classify the critical points of \(f(x, y) = x^3 + y^3 - xy \).

4. Suppose \(p_1 \) and \(p_2 \) are the prices of two products. Also suppose
\[D_1(p_1, p_2) = 1000 - 50p_1 + 2p_2 \quad \text{and} \quad D_2(p_1, p_2) = 500 + 4p_1 - 20p_2 \]
are the demand functions for the two products (quantities). Answer the following questions, showing your work below.

a) If the price of product 1 goes up by a dollar, the demand for product 2 will go up/down (circle one) by \(\underline{\quad} \) units.

b) If the price of product 2 goes up by a dollar, the demand for product 1 will go up/down (circle one) by \(\underline{\quad} \) units.

c) These two products are competitive/complementary/neither (circle one).
An example of two products that might behave this way are \(\underline{\quad} \) and \(\underline{\quad} \).
5. For each three-dimensional surface below, determine the matching set (a, b, c, or d) of level curves in the xy-plane.

6. Calculate \(\int_{1}^{\infty} e^{1-x} \, dx \).
7. Suppose a firm has an order for 200 units of its product and wishes to distribute its manufacture between two plants. Suppose \(x \) units will be produced at the Minneapolis location and \(y \) units will be produced at the Chicago location. If the total cost function is given by \(C(x, y) = 2x^2 + xy + y^2 + 200 \), how many units should be produced at each location in order to minimize cost?