You have 50 minutes to complete this test. You must *show all work* to receive full credit. Work any 7 of the following 8 problems. Clearly **CROSS OUT** the problem you do not wish me to grade. Each problem is worth 14 points, and you get 2 points for free, for a total of 100 points. The answers will be posted on the electronic reserves later today. Since we are doing Basic Skills tomorrow, exams will be returned on Wednesday.

1. Solve
$$\frac{dy}{dx} = 4x^3y^2$$
 if $y = 2$ when $x = 1$.

$$\frac{dy}{y^2} = 4x^3 dx$$

$$\int y^{-2} dy = \int 4x^3 dx$$

$$\frac{y^{-1}}{y} = x^4 + C$$

$$\frac{1}{y} = -x^4 - C$$

If
$$x=1$$
, $y=2$, so
$$\frac{1}{x} = -1 - C$$

$$\frac{3}{x} = -C$$

$$C = -3/x$$

$$\frac{1}{y} = -x^4 + \frac{3}{2}$$

$$y = -x^4 + \frac{3}{2}$$

2. Evaluate the following.

a)
$$\int (4x+2)e^{3x^2+3x-1}dx = 2 \int (2x+1)e^{3x^2+3x-1}dx$$

 $u = 3x^2+3x-1 = 2 \int e^{u}(\frac{1}{3}du)$
 $du = (6x+3)dx = \frac{2}{3}e^{u}+C$
 $= \frac{2}{3}e^{3x^2+3x-1}+C$

b)
$$\int \frac{1}{x(\ln x)^2} dx = \int \frac{1}{(\ln x)^2} \frac{1}{x} dx$$

$$u = \ln x$$

$$du = \frac{1}{x} dx$$

$$= \int \frac{1}{u^2} du = \int u^{-2} du$$

$$= \frac{u}{-1} + C$$

$$= -\frac{1}{\ln x} + C$$

3. Find all maxima, minima and inflection points of $f(x) = x \ln x$ for x > 0. Also give the intervals where f is increasing, decreasing, concave up, and concave down. Find all vertical and horizontal asymptotes, or state that none exist. Then carefully sketch the graph of f.

$$f(x) = x \ln x$$

$$f'(x) = \ln x + x \left(\frac{1}{x}\right)$$

$$= \ln x + 1 = 0$$

$$\ln x = -1$$

$$\ln x = -1$$

$$\ln x = e^{-1} = \frac{1}{e}$$

$$0 = e$$

4. Find f'(x) for the following functions. DO NOT simplify!

(a)
$$f(x) = x^2 \ln \sqrt{x^2 + 1}$$

 $f'(x) = 2x \ln (x^2 + 1)^{1/2} + x^2 \cdot \frac{1}{\sqrt{x^2 + 1}} \cdot \frac{1}{2} (x^2 + 1)^{1/2} (2x)$

(b)
$$f(x) = \frac{e^{-3x}}{x^2 + 1}$$

 $f'(x) = -\frac{3e^{-3x}(x^2 + 1) - e^{-3x}(x^2)}{(x^2 + 1)^2}$

5. Which account will earn more money, Account A, earning 6% annual interest compounded monthly, or Account B, earning 5.5% interest compounded continuously?

Suppose you start with Pdollars. How much will you have in a year?

(A)
$$B = P(1 + \frac{0.06}{12})^2 = 1.062P \leftarrow \text{this is bigger}$$

Account A earns more money.

(Can use a fixed dollar amount for P, and any number of years you like).

6. A family of rabbits has taken up residence under the azalea in my backyard. Currently there are 5 rabbits, and a month from now there will be 8 rabbits. Assuming that rabbits multiply exponentially, and that I keep my cat indoors, how long will it be until there are 100 rabbits?

$$t=0$$
 B=5
 $t=1$ B=8
 $t=?$ B=100

- ① $B = Pe^{rt}$ $S = Pe^{r(0)} = P$ SO $B = Se^{rt}$
- $8 = 5e^{c}$ $1.6 = e^{c}$ $ln1.6 = c \approx 0.47$, so $8 = 5e^{0.47t}$
- (3) $100 = 5e^{0.47t}$ $20 = e^{0.47t}$ 4n20 = 0.47t $t \approx \frac{4n20}{0.47} \approx \frac{4.37 \text{ months}}{0.47}$

7. a) If
$$5 = 1 + 4e^{-6x}$$
, solve for x.

$$4 = 4e^{-6x}$$
 $1 = e^{-6x}$
 $1 = e^{-6x}$
 $1 = -6x$
 $0 = -6x$
 $x = 0$

b) If
$$\log_3 x = \frac{1}{3} (\log_3 16 + 2\log_3 2)$$
, solve for x.

$$\log_{3} x = \frac{1}{3} \left(\log_{3} 16 + \log_{3} 4 \right) \\
 = \frac{1}{3} \left(\log_{3} 64 \right) \\
 = \log_{3} \left(\frac{3}{64} \right) \\
 = \log_{3} 4 \\
 3^{\log_{3} x} = 3^{\log_{3} 4} \\
 x = 4$$

8. Evaluate
$$\int \frac{\ln 3x}{x^2} dx$$
.

$$\int \frac{\ln 3x}{x^2} dx = \int \ln 3x \cdot \frac{1}{x^2} dx$$

Let
$$u = \ln 3x$$
 $dv = \frac{1}{x^2} dx$

$$du = \frac{1}{3x} \cdot 3 dx$$

$$v = \int x^{-2} dx = \frac{x^{-1}}{7} = -\frac{1}{x}$$

$$= \frac{1}{x} dx$$

$$\int \frac{\ln 3x}{x^2} dx = uv - \int v du = -\frac{1}{x} \cdot \ln 3x - \int \frac{1}{x} \cdot \frac{1}{x} dx$$

$$= -\frac{1}{x} \ln 3x + \int x^{-2} dx$$

$$= -\frac{1}{x} \ln 3x - x^{-1} + C$$