You have 50 minutes to complete this test. You must show all work to receive full credit. Work any 6 of the following 7 problems. Clearly cross out the problem you do not wish me to grade. Each problem is worth 16 points, and you get 4 points for free, for a total of 100 points. The answers will be posted on the electronic reserves later today.

1. Find the area of the region bounded by $y = x^3$ and $y = 9x$. Be sure to sketch a graph first!

 \[
 \text{Intersection points:} \quad x^3 = 9x \\
 x^3 - 9x = 0 \\
 x(x^2 - 9) = 0 \\
 x = 0, \pm 3
 \]

 \[
 A = \int_{-3}^{0} (x^2 - 9x) \, dx + \int_{0}^{3} (9x - x^3) \, dx
 \]

 \[
 = \left[\frac{1}{4} x^4 - \frac{9}{2} x^2 \right]_{-3}^{0} + \left[\frac{9}{2} x^2 - \frac{1}{4} x^4 \right]_{0}^{3}
 \]

 \[
 = \left[0 - \left(\frac{81}{4} - \frac{81}{2} \right) \right] + \left[\frac{81}{2} - \frac{81}{4} \right] - 0
 \]

 \[
 = \frac{81}{4} + \frac{81}{4} = \frac{81}{2}
 \]

2. Find all four second-order partial derivatives of $f(x, y) = e^{x^2y}$. Do NOT simplify.

 \[
 f_x = e^{x^2y} \cdot 2xy = 2xy e^{x^2y} \\
 f_y = e^{x^2y} \cdot x^2 = x^2 e^{x^2y}
 \]

 \[
 f_{xx} = 2y e^{x^2y} + 2xy e^{x^2y} \cdot 2xy \\
 f_{xy} = 2x e^{x^2y} + 2xy e^{x^2y} \cdot x^2 \\
 f_{yy} = x^2 e^{x^2y} \cdot x^2 \\
 f_{yx} = 2x e^{x^2y} + x^2 e^{x^2y} \cdot 2xy
 \]

 equal, good!
3. Find and classify the critical points of \(f(x, y) = \frac{1}{3} x^3 + y^2 - 2x + 2y - 2xy \).

\[
\begin{align*}
\frac{\partial f}{\partial x} &= x^2 - 2 - 2y = 0 \\
\frac{\partial f}{\partial y} &= 2y + 2 - 2x = 0 \rightarrow x = y + 1 \\
(\frac{\partial^2 f}{\partial x^2}) &= 2x \\
(\frac{\partial^2 f}{\partial y^2}) &= 2 \\
(\frac{\partial^2 f}{\partial x \partial y}) &= -2 \\
D(x, y) &= \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - (\frac{\partial^2 f}{\partial x \partial y})^2 = 4x - 4
\end{align*}
\]

Critical points: \((2, 1), (0, -1)\)

\(x = 2, x = 0 \)

4. Suppose two products have demand equations \(D_1 = \frac{100}{p_1 \sqrt{p_2}} \) and \(D_2 = \frac{500}{p_2 \sqrt{p_1}} \), where \(p_1 \) and \(p_2 \) are the respective prices of the products. Are the products competitive, complementary, or neither? Give an example of two products that might behave this way.

\[
\frac{\partial D_1}{\partial p_2} = -50 p_1^{-1} p_2^{-3/2} < 0 \quad D_1 = 100 p_1^{-1} p_2^{-1/2}
\]

\[
\frac{\partial D_2}{\partial p_1} = -750 p_2^{-1} p_1^{-5/2} < 0 \quad D_2 = 500 p_2^{-1} p_1^{-3/2}
\]

The products are complementary.

Examples: hot dogs & hot dog buns, Corona & Lime...
5. Using four rectangles, estimate the area under the curve \(y = 10x - x^2 \) between \(x = 1 \) and \(x = 7 \). Then find the exact area.

\[
Y = -(x^2 - 10x) = -x(x-10) \quad \text{parabola, opens down, (0,0) & (10,0)}
\]

Estimate

\[
A \approx R_1 + R_2 + R_3 + R_4
\]

\[
\approx \frac{3}{2} \left(f\left(\frac{5}{2}\right) + \frac{3}{2} f\left(4\right) + \frac{3}{2} f\left(\frac{11}{2}\right) + \frac{3}{2} f(7) \right)
\]

\[
\approx \frac{3}{2} \left(25 - \frac{25}{4} \right) + \frac{3}{2} (40 - 16) + \frac{3}{2} (55 - \frac{121}{4}) + \frac{3}{2} (70 - 49)
\]

\[
\approx \frac{3}{2} \left(\frac{75}{4} + 24 + \frac{99}{4} + 21 \right)
\]

\[
\approx \frac{3}{2} \left(\frac{87}{2} + 45 \right) \approx \frac{3}{2} \left(\frac{127}{2} \right) = \frac{631}{4}
\]

Exact

\[
A = \int_{1}^{7} (10x - x^2) \, dx = 5x^2 - \frac{x^3}{3} \bigg|_{1}^{7}
\]

\[
= (5(49) - \frac{343}{3}) - (5 - \frac{1}{3})
\]

\[
= 240 - \frac{342}{3} = 240 - 114 = 126
\]

6. Calculate \(\int_{1}^{\infty} \frac{x^2}{(x^3 + 2)^2} \, dx \).

\[
= \lim_{n \to \infty} \int_{1}^{n} \frac{x^2}{(x^3 + 2)^2} \, dx = \lim_{n \to \infty} \int_{1}^{x=n} \frac{1}{3} u^{-2} \, du = \lim_{n \to \infty} \left[\frac{-1}{3} u^{-1} \right]_{x=1}^{x=n}
\]

\[
= \frac{-1}{3(x^3 + 2)} \bigg|_{1}^{n}
\]

\[
= \lim_{n \to \infty} \left[\frac{-1}{3(n^3 + 2)} + \frac{1}{3(1^2)} \right]
\]

\[
= \frac{1}{9}
\]
A computer company has a monthly advertising budget of $60,000. Its marketing department estimates that if \(x \) dollars are spent each month on advertising in electronic media and \(y \) dollars per month are spent on television advertising, then the monthly sales will be \(S = 90x^{1/4}y^{3/4} \) dollars. If profit is 10% of sales, less the advertising cost, determine how to allocate the advertising budget in order to maximize monthly profit.

\[
x + y = 60000 \quad \text{constraint}
\]

\[
\text{Profit} = 0.10 (\text{sales}) - \text{adv. cost}
\]

\[
P = 0.10 (90x^{1/4}y^{3/4}) - 60000
\]

\[
P = 9x^{1/4}y^{3/4} - 60000 \quad \text{optimize this.}
\]

\[
F(x, y, \lambda) = 9x^{1/4}y^{3/4} - 60000 - \lambda (x + y - 60000)
\]

\[
= 9x^{1/4}y^{3/4} - 60000 - \lambda x - \lambda y + 60000\lambda
\]

\[
F_x = \frac{9}{4}x^{-3/4}y^{3/4} - \lambda = 0 \quad \rightarrow \quad \lambda = \frac{9y^{3/4}}{4x^{3/4}} = \frac{27x^{1/4}}{4y^{1/4}}
\]

\[
F_y = \frac{27}{4}x^{1/4}y^{-1/4} - \lambda = 0
\]

\[
F_\lambda = -x - y + 60000 = 0
\]

\[
-x - 3x + 60000 = 0
\]

\[
60000 = 4x
\]

\[
\begin{cases}
 x = 15000 \quad \text{on electronic media} \\
 y = 45000 \quad \text{on TV}
\end{cases}
\]