2. First Order DEs

Sec. 2.1 Linear DEs; Method of Integrating Factors

HW p. 39: #7, 15, 28, 34 Due: Wed., Sept. 1
Schaums p.

1st order DEs have the form: \(y' = f(t, y) \)

Linear 1st order DEs have form: \(q(t)y' + a(t)y = g(t) \)

Dividing through by \(q(t) \) we can place the 1st order linear DE in "standard" form

\[y' + p(t)y = q(t) \]

Ex 1| (Equivalent to #4, p. 39) Find the general solution on the interval \(-\infty < t < \infty\) of

(*) \[ty' + y = 3t \cos(2t) \]

Solution: Note that the product rule for derivatives implies that

\[\frac{d}{dt}(ty) = ty' + 1y = ty' + y \]

Therefore the left member of (*) is "exact"; i.e. the left member of (*) is the derivative of the single expression \(ty \). Hence (*) can be rewritten as

\[\frac{d}{dt}(ty) = 3t \cos(2t) \]

Integrating both sides of this equation with respect to \(t \) yields

\[ty = \int \frac{3t \cos(2t)}{3t \cos(2t)} \, dt \]

\[= 3t \left(\frac{\sin(2t)}{2} \right) - \int \frac{\sin(2t) \, 3 \, dt}{2} \]

\[ty = \frac{3}{2} t \sin(2t) + \frac{3}{4} \cos(2t) + c \]

\[\therefore y(t) = \frac{3}{2} \sin(2t) + \frac{3}{4} \cos(2t) + \frac{c}{t} \quad \text{on} \quad -\infty < t < \infty \]
Ex. 2] (§ 10, p. 39) Find the general solution of

\[y' - \frac{1}{t} y = t e^{-t} \]

on the interval \(0 < t < \infty\).

Solution: Unlike the previous example, the left member of (\(*)\) is not "exact".

Following in the footsteps of Leonard Euler (pronounced "oi ler"), who wrote the first textbook on differential equations, we multiply both sides of (*) by the "integrating factor" \(t^{-1}\) to make the left member exact:

\[t^{-2} (y' - \frac{1}{t} y) = t^{-2} t e^{-t} \]

\[t^{-2} y' - t^{-1} y = e^{-t} \]

Check:

\[\frac{d}{dt} (t^{-1} y) = t^{-1} y' - t^{-2} y \]

Now we integrate both sides with respect to \(t\):

\[t^{-1} y = \int e^{-t} dt = -e^{-t} + c \]

or

\[y(t) = -te^{-t} + ct \]

is the general solution of (*) on \(0 < t < \infty\).

Q: Can we always find an integrating factor for the 1st-order linear DE

\[y' + p(t)y = q(t) \]

A: (Euler) Yes, \(\mu(t) = e^{\int p(t) dt} \) is an integrating factor. (§ 10, p. 36)
CheckEx: \[y' - \frac{1}{t}y = te^t \]

An integrating factor is \(\mu(t) = e^{\int \frac{1}{t} dt} = e^{\int \frac{1}{t} dt - \ln(t)} = e^{\ln(t^*)} = t^* \).

Here is an algorithm for solving first order linear DEs: \(q(t)y' + a(t)y = g(t) \)

1. Place the DE in standard form: \(y' + pt(t)y = q(t) \).
2. Compute an integrating factor \(\mu(t) = e^{\int pt(t) dt} \).
3. Multiply the DE in step 1 by the integrating factor \(\mu(t) \).
4. Solve the resulting exact DE: \[\frac{d}{dt} [\mu(t)y] = \mu(t)q(t) \]

Note that the left member in step 4 should be the derivative of the product of the integrating factor \(\mu(t) \) and the solution \(y \) we seek. You should always check this when you're solving such problems. It will help you identify errors you might have made in steps 1–3.

Ex 3 \(\) (Similar to #24, p. 20) Solve the initial value problem:

\[ty' + (t+1)y = 2te^{-t}, \quad y(1) = 0. \]

Solution: Note that the DE is first order linear: \(a(t)y' + a(t)y = g(t) \), where \(a(t) = t, \quad a(1) = 1 + t, \quad a(2) = 2e^{-t} \).

Step 1: \[y' + \left(\frac{t+1}{t}\right)y = 2e^{-t} \]

Step 2: \[\mu(t) = e^{\int \frac{t+1}{t} dt} = e^{\int\left(1 + \frac{1}{t}\right) dt} = e^{t + \ln(t)} = te^t \]

Step 3: \[te^t \left[y' + \left(\frac{t+1}{t}\right)y \right] = te^t (2e^{-t}) \]

\[te^t y' + (t+1)e^t y = 2t \]
\[\frac{d}{dt} \left[te^y \right] = 2t \]

Step 1:
\[te^y = \int 2t \, dt \]
\[te^y = t^2 + C \]
\text{arbitrary constant}

Check:
\[\frac{d}{dt} [te^y] = te^y + (te^t)y \]
\[= t^2e^y + (t+1)e^t y \]
\[= t^2e^y + (t+1)e^y \checkmark \]

\[y(t) = te^t + Cte^{-t} \]

is the general solution of the DE on \(0 < t < \infty \). We want to choose \(C \) so \(y(1) = 0 \).

\[C = y(1) = e^1 + C e^{-1} \implies C = -1. \]

\[y(t) = te^t - te^{-t} \]

solves the IVP.