Mathematics 315
Introduction to Mathematical Analysis

Qualifying Examination

January 2014
This is a three hour examination in which you may refer at any time to your textbooks for Math 315: Principles of Mathematical Analysis by Walter Rudin and Real Analysis by H.L. Royden and P.M. Fitzpatrick.  However, all other aids – books, lecture notes, homework and exam solutions, calculators, computers, smart phones, etc. – are NOT permitted.

This examination consists of six problems of equal value arranged in two groups.  You are to solve FOUR problems of your choosing, subject to the constraint that two problems must be chosen from Group A and two problems must be chosen from Group B.  The minimum score for a passing grade on this exam is 70 percent.

GROUP A
1.  Let 
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 denote the space of continuous functions 
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.  (Here 
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 denote the Fourier coefficients of 
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     (a) Show that 
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 defines a norm on 
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     (b) Show that there exists a constant 
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2.  Let 
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 and 
[image: image17.wmf]g

 be continuous functions on the closed interval 
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 be of bounded variation on 
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Show that 
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 is of bounded variation on 
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3.  Let 
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 denote the greatest integer not exceeding 
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; that is, 
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  Consider the function defined on the real line by

[image: image32.wmf](

)

(

)

2

1

n

nx

fx

n

¥

=

=

å

.

     (a) Find with proof all the discontinuities of 
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 and show they form a countable dense set.

     (b) Show that 
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 is nevertheless Riemann-integrable on every bounded interval.

GROUP B
4.  Let 
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 be the subset of the closed interval 
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 consisting of those real numbers 
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 such that, in the decimal representation of 
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 the first appearance of the digit 2 precedes the first appearance of the digit 3.  Show that 
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 is Lebesgue measurable and find its measure.
5.  Let 
[image: image40.wmf]{

}

1

n

n

f

¥

=

 be a sequence of measurable functions on 
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and 
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(Hint: Egoroff and Cauchy-Schwarz may be useful.)

6.  Evaluate 
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, justifying any interchange of limits you use.
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