On this exam, **no proofs are required** to support your answers if you are asked to state a theorem, write a formula, or give an example.

1. (34 pts.)
 (a) Define the phrase "E is a countable set".
 (b) Give an example of a subset E of the real numbers \(\mathbb{R} \) which is countable and dense in \(\mathbb{R} \).
 (c) Define the phrase "E is a subset of \(\mathbb{R} \) of measure zero".
 (d) Give an example of a subset E of \(\mathbb{R} \) which is countable and not of measure zero or state a theorem showing why this is impossible.
 (e) Give an example of a subset E of \(\mathbb{R} \) which is not countable and has measure zero or state a theorem showing why this is impossible.

 (f) If \(f \) is an increasing real function on \([a,b]\), state a theorem which characterizes the set of points at which \(f \) is continuous.

 (g) If \(f' \) is an increasing real function on \([a,b]\), state Lebesgue's theorem characterizing the set of points at which \(f \) is differentiable.

 Solve ONE of the following two problems, 2A or 2B. **CIRCLE** the number of the problem that you want me to grade.

2A. (33 pts.)
 Let \(f \) be a bounded real function on \([a,b]\) and let \(\alpha \) be an increasing real function on \([a,b]\).
 (a) Give a **careful and complete** definition of the phrase "\(f \) is Riemann-Stieltjes integrable with respect to \(\alpha \) on \([a,b]\)". (Note: Make sure that symbols such as \(U(P,f,\alpha) \), \(L(P,f,\alpha) \), \(\int_a^b f \, d\alpha \), and \(\int_a^b f \, d\alpha \) that appear in your definition are carefully defined.)
 (b) State a theorem which guarantees the existence of \(\int_a^b f \, d\alpha \).
 (c) If \(f \) is continuous on \([0,1]\) and \(\alpha(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} H(x - 1 + \frac{1}{2^n}) \), then write a formula for the value of \(\int_0^1 f \, d\alpha \). (Here \(H \) denotes the unit Heaviside step function.)

2B. (33 pts.)
 Let \(f \) be a bounded real function on \([a,b]\) and let \(\alpha \) be a function of bounded variation on \([a,b]\).
 (a) Define what it means for \(\alpha \) to be of bounded variation on \([a,b]\).
 (b) Give an example of a function which is differentiable but not of bounded variation on \([a,b]\).
 (c) State a condition on a differentiable function which will guarantee that it is of bounded variation on \([a,b]\).
 (d) State Jordan's theorem relating functions of bounded variation and increasing functions.
 (e) How is the Riemann-Stieltjes integral of \(f \) with respect to \(\alpha \) on \([a,b]\) defined in terms of Riemann-Stieltjes integrals with increasing integrators?
 (f) If \(f \) is Riemann integrable on \([0,1]\) and \(\alpha \) is differentiable with \(\alpha' \) Riemann integrable on \([0,1]\), then write a formula for the value of \(\int_0^1 f \, d\alpha \).
1. (a) E is a countable set if there is a one-to-one function f mapping the positive integers onto the set E.

(b) The rational numbers \mathbb{Q} is an example of a subset of \mathbb{R} which is countable and dense in \mathbb{R}.

(c) $E \subseteq \mathbb{R}$ is a set of measure zero if to each $\varepsilon > 0$ there corresponds a countable collection $\{(a_n, b_n)\}_{n=1}^{\infty}$ of open intervals in \mathbb{R} satisfying $E \subseteq \bigcup_{n=1}^{\infty} (a_n, b_n)$ and $\sum_{n=1}^{\infty} (b_n - a_n) < \varepsilon$.

(d) There is no such subset E of \mathbb{R} because if E is countable then E is of measure zero.

(e) The Cantor set P in $[0,1]$ has measure zero and is not countable.

(f) If $f: [a,b] \to \mathbb{R}$ is increasing then the set of discontinuities of f is either finite or countable.

(g) If $f: [a,b] \to \mathbb{R}$ is increasing then the set of points at which f is not differentiable has measure zero.
2A. (a) Let \(P : a = x_0 < x_1 < x_2 < \ldots < x_n = b \) be a partition of \([a, b]\) and let \(M_i = \sup \{ f(x) : x_{i-1} \leq x \leq x_i \} \) and \(m_i = \inf \{ f(x) : x_{i-1} \leq x \leq x_i \} \) for \(i = 1, 2, \ldots, n \). Form the upper and lower Riemann–Stieltjes sums:

\[
\mathcal{U}(P, f, \alpha) = \sum_{i=1}^{n} M_i (\alpha(x_i) - \alpha(x_{i-1}))
\]

\[
\mathcal{L}(P, f, \alpha) = \sum_{i=1}^{n} m_i (\alpha(x_i) - \alpha(x_{i-1}))
\]

The upper and lower Riemann–Stieltjes integrals are:

\[
\int_{a}^{b} f \, d\alpha = \inf \{ \mathcal{U}(P, f, \alpha) : P \text{ is a partition of } [a, b] \}
\]

\[
\int_{a}^{b} f \, d\alpha = \sup \{ \mathcal{L}(P, f, \alpha) : P \text{ is a partition of } [a, b] \}
\]

We say that \(f \) is Riemann–Stieltjes integrable with respect to \(\alpha \) on \([a, b]\) provided

\[
\int_{a}^{b} f \, d\alpha = \int_{a}^{b} f \, d\alpha
\]

(b) If \(f \) is continuous on \([a, b]\) and \(\alpha \) is increasing on \([a, b]\) then \(f \in \mathcal{R}(\alpha) \) on \([a, b]\).

(or)

If \(f \) is monotonic on \([a, b]\) and \(\alpha \) is continuous and increasing on \([a, b]\) then \(f \in \mathcal{R}(\alpha) \) on \([a, b]\).

(c) If \(f \) is continuous on \([0, 1]\) and \(\alpha(x) = \sum_{n=1}^{\infty} 2^n H(x - 1 + 2^n) \) then

\[
\int_{0}^{1} f \, d\alpha = \sum_{n=1}^{\infty} 2^n f(1 - 2^{-n})
\]
The function \(f : [a, b] \rightarrow \mathbb{R} \) is of bounded variation on \([a, b]\) provided there is a real number \(M \) such that
\[
\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| \leq M
\]
for all partitions \(P: a = x_0 < x_1 < \ldots < x_n = b \) of \([a, b]\).

\(f(x) = \begin{cases}
\frac{x^2 \sin(1/x^3)}{x^3} & \text{if } 0 < x \leq 1, \\
0 & \text{if } x = 0,
\end{cases} \)

is differentiable on \([0, 1]\) but \(f \) is not of bounded variation on \([0, 1]\).

If \(f \) is differentiable and \(f' \) is bounded on \([a, b]\), then \(f \) is of bounded variation on \([a, b]\).

(Jordan's Theorem)

If \(\alpha \) is of bounded variation on \([a, b]\) then there exist increasing real functions \(\alpha_1 \) and \(\alpha_2 \) on \([a, b]\) such that \(\alpha(x) = \alpha_1(x) - \alpha_2(x) \) for all \(a \leq x \leq b \).

Let \(\alpha = \alpha_1 - \alpha_2 \) where each \(\alpha_i \) is increasing on \([a, b]\). If \(f \in R(\alpha_i) \) on \([a, b]\) for \(i = 1, 2 \), then define \(\int_a^b f \, d\alpha = \int_a^b f \, d\alpha_1 - \int_a^b f \, d\alpha_2 \).

If \(f \in R([0, 1]) \) and \(\alpha \) is differentiable with \(\alpha' \in R([0, 1]) \), then \(f \in R(\alpha) \) and
\[
\int_0^1 f \, d\alpha = \int_0^1 f(x) \alpha'(x) \, dx.
\]
3A. (a) N is a norm on the vector space \mathbb{X} provided N is a real function defined on \mathbb{X} with the following properties:

(i) $N(\vec{x}) \geq 0$ for all \vec{x} in \mathbb{X}, with equality only if $\vec{x} = 0$;
(ii) $N(c\vec{x}) = |c|N(\vec{x})$ for all \vec{x} in \mathbb{X} and c in \mathbb{R};
(iii) $N(\vec{x} + \vec{y}) \leq N(\vec{x}) + N(\vec{y})$ for all \vec{x} and \vec{y} in \mathbb{X}.

(b) A sequence $\{\vec{x}_n\}_{n=1}^{\infty}$ in a normed linear space (\mathbb{X}, N) is convergent provided there exists \vec{x} in \mathbb{X} such that $\lim_{n \to \infty} N(\vec{x}_n - \vec{x}) = 0$.

(c) A sequence $\{\vec{x}_n\}_{n=1}^{\infty}$ in a normed linear space (\mathbb{X}, N) is Cauchy provided $N(\vec{x}_n - \vec{x}_m) \to 0$ as m and n tend to infinity.

(d) Convergent sequences are Cauchy sequences in a normed linear space. However, for a general normed linear space, Cauchy sequences need not converge.

(e) A normed linear space (\mathbb{X}, N) in which every Cauchy sequence is convergent is called a Banach space.

(f) $(C[0,1], \| \cdot \|_1)$, where $\| f \|_1 = \int_0^1 |f(x)| \, dx$ for f in $C[0,1]$, is a normed linear space which is not a Banach space.

(g) $(C[0,1], \| \cdot \|_\infty)$, where $\| f \|_\infty = \sup\{ |f(x)| : 0 \leq x \leq 1 \}$ for f in $C[0,1]$, is a Banach space.
\(3B. \) (a) \(\{f_n\}_{n=1}^\infty \) converges to \(f \) pointwise on \([a, b]\) provided
\[
\lim_{n \to \infty} f_n(x) = f(x) \quad \text{for each} \quad x \in [a, b].
\]
(b) \(\{f_n\}_{n=1}^\infty \) converges to \(f \) uniformly on \([a, b]\) provided to each \(\varepsilon > 0 \) there corresponds an integer \(N = N(\varepsilon) \geq 1 \) such that \(|f_n(x) - f(x)| < \varepsilon \) for all \(x \in [a, b] \) and all \(n \geq N \).

(c) Let \(f_n(x) = \begin{cases} 1 - 2n|x - \frac{1}{n}| & \text{if } 0 \leq x \leq \frac{1}{n}, \\ 0 & \text{if } \frac{1}{n} < x \leq 1, \end{cases} \)
and \(f(x) = 0 \) if \(0 \leq x \leq 1 \). Show \(\{f_n\}_{n=1}^\infty \) converges pointwise to \(f \) on \([0, 1]\) but \(\{f_n\}_{n=1}^\infty \) does not converge uniformly to \(f \) on \([0, 1]\).

(d) Let \(f_n : E \to \mathbb{R} \quad (n=1, 2, 3, \ldots) \) be a sequence of bounded functions on a set \(E \) and let \(M_n = \sup \{|f_n(x)| : x \in E\} \) \((n=1, 2, 3, \ldots)\). If \(\sum_{n=1}^\infty M_n < \infty \)
then the sequence of partial sums of \(\sum_{n=1}^\infty f_n \) converges uniformly on \(E \).

(e) Let \(\mathcal{A} \) be a family of real functions defined on a set \(E \). \(\mathcal{A} \) is called an algebra provided:
(i) if \(f \) and \(g \) belong to \(\mathcal{A} \) then \(f+g \) belongs to \(\mathcal{A} \);
(ii) if \(f \) belongs to \(\mathcal{A} \) and \(c \) is any real number then \(cf \) belongs to \(\mathcal{A} \);
(iii) if \(f \) and \(g \) belong to \(\mathcal{A} \) then \(fg \) belongs to \(\mathcal{A} \).

(f) \(\mathcal{A} \) separates points on \(E \) if to each pair of distinct \(p \) and \(q \) in \(E \) there corresponds \(f \) in \(\mathcal{A} \) such that \(f(p) \neq f(q) \).
(g) A vanishes at no point of E if to each point p in E there corresponds f in A such that $f(p) \neq 0$.

(h) Let A be an algebra of real continuous functions on a compact metric space K. If A separates points on K and if A vanishes at no point of K then to each continuous function $f : K \to \mathbb{R}$ there corresponds a sequence $\{f_n\}_{n=1}^{\infty}$ of functions in A such that $f_n \to f$ uniformly on K.
Math 315
Midterm Exam
Spring 2011

\(n: 14 \)
mean: 77.1
standard deviation: 15.2

Distribution of Scores:

<table>
<thead>
<tr>
<th>Range</th>
<th>Letter Grade</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 - 100</td>
<td>A</td>
<td>7</td>
</tr>
<tr>
<td>60 - 79</td>
<td>B</td>
<td>6</td>
</tr>
<tr>
<td>40 - 59</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>0 - 39</td>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>