Definition. For $n \geq 1$, let $C^n[a,b]$ denote the vector space of n times continuously differentiable complex-valued functions on the interval $[a,b]$. Let $C[a,b]$ denote the vector space of continuous complex-valued functions on $[a,b]$, and let V be a vector subspace of $C[a,b]$. A function T, defined on V, taking values in $C[a,b]$, and with the property that

$$T(c_1f_1 + c_2f_2) = c_1T(f_1) + c_2T(f_2)$$

for all numbers c_1 and c_2 and all f_1 and f_2 in V, is called a linear operator on V.

Example 1. The differential operator $T = -\frac{d^2}{dx^2}$ is a linear operator on $C^2[a,b]$.

Definition. A linear operator $T : V \rightarrow C[a,b]$ is called symmetric if $\langle Tf, g \rangle = \langle f, Tg \rangle$ for all f and g in V.

Example 2. Show that the operator $T = -\frac{d^2}{dx^2}$ is symmetric on $V_D = \{ f \in C^2[0,\pi] : f(0) = f(\pi) \}$.

Solution: Let f and g belong to V_D. Then two integrations by parts and use of the boundary conditions $f(0) = f(\pi)$ and $g(0) = g(\pi)$ show that

$$\langle Tf, g \rangle = \int_0^\pi f(x) g''(x) dx - \int_0^\pi f''(x) g(x) dx = \left. f(x)g(x) \right|_{x=0}^{x=\pi} - \int_0^\pi f''(x) g(x) dx$$

$$= \int_0^\pi \left[-f''(x)g''(x) \right] dx.$$ Therefore $\langle Tf, g \rangle = \langle f, Tg \rangle$ so T is symmetric on V_D.

Homework A. Show that $T = -\frac{d^2}{dx^2}$ is symmetric on the following subspaces of $C[0,\pi]$.

1. $V_N = \{ f \in C^2[0,\pi] : f'(0) = 0 = f'(\pi) \}$.
2. $V_P = \{ f \in C^2[-\pi,\pi] : f(-\pi) = f(\pi), f'(-\pi) = f'(\pi) \}$.
3. $V_R = \{ f \in C^2[0,\pi] : f'(0) - a_0f(0) = 0 = f'(\pi) + a_\pi f(\pi) \}$.
 (Here a_0 and a_π are fixed real constants.)

Example 3. Show that the operator $Tf(x) = (1-x^2)f''(x) - xf'(x)$ is symmetric on the vector space $V_T = \{ f \in C^2(-1,1) : f$ and f' are bounded on $(-1,1) \}$ equipped with the inner product

$$(*) \quad \langle f, g \rangle = \int_{-1}^1 f(x)g(x)(1-x^2)^{-1/2} dx.$$ Solution: Let f and g belong to V_T. Then $\langle Tf, g \rangle = \int_{-1}^1 \left[(1-x^2)f''(x) - xf'(x) \right] g(x)(1-x^2)^{-1/2} dx$
Solution (cont.):
\[
\langle Tf, g \rangle = \int_{-1}^{1} \left[(1-x^2)^{\frac{1}{2}} f'(x) - x(1-x^2)^{\frac{1}{2}} f(x) \right] \overline{g(x)} \, dx = \int_{-1}^{1} \overline{g(x)} \frac{d}{dx} \left[(1-x^2)^{\frac{1}{2}} f(x) \right] \, dx
\]
\[
= (1-x^2)^{\frac{1}{2}} f'(x) \overline{g(x)} \bigg|_{-1}^{1} - \int_{1}^{1} (1-x^2)^{\frac{1}{2}} f'(x) \overline{g(x)} \, dx.
\]
Since \(\lim_{x \to 1^-} (1-x^2)^{\frac{1}{2}} f'(x) \overline{g(x)} \) is bounded and \(\lim_{x \to 1^+} (1-x^2)^{\frac{1}{2}} f'(x) \overline{g(x)} = 0 \) by the Squeeze Theorem, it follows that \((1-x^2)^{\frac{1}{2}} f'(x) \overline{g(x)} \) is bounded near \(x=1 \).

Therefore
\[
\langle Tf, g \rangle = -\int_{1}^{1} (1-x^2)^{\frac{1}{2}} g'(x) f(x) \, dx = -\int_{1}^{1} (1-x^2)^{\frac{1}{2}} \frac{g''(x)}{g'(x)} f(x) \, dx + \int_{1}^{1} f(x) \frac{d}{dx} \left[(1-x^2)^{\frac{1}{2}} g'(x) \right] \, dx.
\]

But an argument similar to the one above shows that \(-\int_{1}^{1} (1-x^2)^{\frac{1}{2}} \frac{g''(x)}{g'(x)} f(x) \, dx = 0 \) so

\[
\langle Tf, g \rangle = \int_{-1}^{1} f(x) \left[(1-x^2)^{\frac{1}{2}} g'(x) - x (1-x^2)^{\frac{1}{2}} g'(x) \right] \, dx = \int_{-1}^{1} f(x) \left[(1-x^2)^{\frac{1}{2}} g''(x) - (1-x^2)^{\frac{1}{2}} x g'(x) \right] \, dx
\]

and hence \(\langle Tf, g \rangle = \langle f, Tg \rangle \). Consequently \(T \) is symmetric on \(V_T \).

Definition. Let \(T : V \to C[a,b] \) be a linear operator. If \(\lambda \) is a complex number and \(f \neq 0 \) is a function in \(V \) such that \(Tf = \lambda f \) then \(\lambda \) is called an **eigenvalue** of \(T \) and \(f \) is called an **eigenfunction** of \(T \).

Example 4. The operator \(T = \frac{d^2}{dx^2} \) on \(V_D = \{ f \in C^2[0,\pi] : f(0) = f(\pi) = 0 \} \) has eigenvalues \(\lambda_n = n^2 \) \((n = 1, 2, 3, \ldots)\) and corresponding eigenfunctions \(f_n(x) = \sin(nx) \) \((n = 1, 2, 3, \ldots)\).

Theorem 2. Let \(T : V \to C[a,b] \) be a symmetric operator. Then all the eigenvalues of \(T \) are real numbers.

Note: The proof of Theorem 2 will make use of the following properties of an inner product.

1. For all \(f \) in \(V \), \(\langle f, f \rangle \geq 0 \), with equality only if \(f = 0 \).
2. For all \(f, g, \) and \(h \) in \(V \), \(\langle f + g, h \rangle = \langle f, h \rangle + \langle g, h \rangle \).
3. For all \(f \) and \(g \) in \(V \) and all complex numbers \(\alpha \), \(\langle \alpha f, g \rangle = \alpha \langle f, g \rangle \).
4. For all \(f \) and \(g \) in \(V \), \(\langle f, g \rangle = \langle g, f \rangle \).

It is an easy consequence of (3) and (4) that \(\langle f, \alpha g \rangle = \overline{\alpha} \langle f, g \rangle \).

Proof of Theorem 2: Let \(\lambda \) be an eigenvalue of \(T \) and let \(f \) be a nonzero function in \(V \).
Proof of Theorem 2 (cont.): such that $Tf = \lambda f$. Then $\lambda \langle f, f \rangle = \langle \lambda f, f \rangle = \langle Tf, f \rangle = \langle f, T \rangle = \lambda \langle f, f \rangle$, consequently, $\lambda = \lambda f$. But $f \neq 0$ so $\langle f, f \rangle > 0$ by (1).

Hence $\lambda - \lambda = 0$ or equivalently $\lambda = \lambda$. That is, λ is a real number.

Theorem 1. Let $T : V \rightarrow C[a,b]$ be a symmetric operator. If f_1 and f_2 are eigenfunctions of T corresponding to distinct eigenvalues λ_1 and λ_2 of T, then f_1 and f_2 are orthogonal on $[a,b]$.

Proof: Let λ_1 and λ_2 be distinct eigenvalues of T on V. That is, $\lambda_1 \neq \lambda_2$ and there exist nonzero functions f_1 and f_2 in V such that $Tf_1 = \lambda_1 f_1$ and $Tf_2 = \lambda_2 f_2$. Thus $\lambda_1 \langle f_1, f_2 \rangle = \langle \lambda_1 f_1, f_2 \rangle = \langle Tf_1, f_2 \rangle = \langle f_1, T f_2 \rangle = \langle f_1, \lambda_2 f_2 \rangle = \lambda_2 \langle f_1, f_2 \rangle$ by Theorem 2. Therefore $(\lambda_1 - \lambda_2) \langle f_1, f_2 \rangle = \lambda_1 \langle f_1, f_2 \rangle - \lambda_2 \langle f_1, f_2 \rangle = 0$.

But $\lambda_1 - \lambda_2 \neq 0$ so $\langle f_1, f_2 \rangle = 0$. That is, f_1 and f_2 are orthogonal on $[a,b]$.

Example 5. Let $Tf(x) = (1 - x^2) f''(x) - xf'(x)$ be the operator on the vector space $V_T = \{ f \in C^2(-1,1) : f$ and f' are bounded on $(-1,1) \}$ equipped with the inner product

$$\langle f, g \rangle = \int_{-1}^{1} f(x) \overline{g(x)} (1 - x^2)^{-1/2} \, dx.$$

Show that all the eigenvalues of T are real numbers and the eigenfunctions of T corresponding to distinct eigenvalues are orthogonal on the interval $(-1,1)$ relative to the inner product (\ast).

Solution: Example 3 shows that the operator T is symmetric on V_T, equipped with the inner product (\ast). According to Theorem 2, all the eigenvalues of T are real numbers. By Theorem 1, eigenfunctions of T corresponding to distinct eigenvalues are orthogonal on $(-1,1)$ relative to the inner product (\ast).

Note: It can be shown that the symmetric operator T in Example 5 has eigenvalues $\lambda_n = -n^2$ ($n = 0, 1, 2, \ldots$) and corresponding eigenfunctions that are the Tchebicheff polynomials: $f_n(x) = \cos \left(n \cos^{-1}(x) \right)$ ($n = 0, 1, 2, \ldots$). The third three Tchebicheff polynomials are $f_0(x) = 1$, $f_1(x) = x$, and $f_2(x) = 2x^2 - 1$. The Tchebicheff polynomials are solutions to Tchebicheff’s differential equation $(1 - x^2) f''(x) - xf'(x) = \lambda f(x)$ on the interval $(-1,1)$ with $\lambda = \lambda_n = -n^2$.

Note on #1 of “Additional Problems for Section 5.3”:

Consider the operator

\[Tf(r) = \frac{1}{r} \frac{d}{dr} \left(rf'(r) \right) - \frac{n^2}{r^2} f(r) \quad (0 < r \leq 1) \]

on the domain

\[V_B = \{ f \in C^2[0,1]: f(1) = 0 \text{ and } f, f' \text{ are bounded on } (0,1) \} \]

The inner product

\[\langle f, g \rangle = \int_0^1 f(r) \overline{g(r)} r dr \]

on \(V_B \) arises naturally from the inner product

\[\langle h, k \rangle = \int_0^{2\pi} \int_0^1 h(r, \theta) \overline{k(r, \theta)} r dr d\theta \]

for square-integrable functions \(h \) and \(k \) in the unit disk \(D = \{(r, \theta) : 0 \leq r \leq 1, 0 \leq \theta \leq 2\pi \} \) of the plane.

The eigenvalue equation \(Tf = \lambda f \) for this operator is equivalent to Bessel’s equation of order \(n \) (cf. pp. 252 and 268 in Strauss):

\[\frac{1}{r} \frac{d}{dr} \left(rf''(r) \right) - \frac{n^2}{r^2} f(r) = \lambda f(r). \]

For applications of #1 in solving PDEs see Strauss, Section 10.2: Vibrations of a (Circular) Drumhead.

Theorem 3. Let \(T = -\frac{d^2}{dx^2} \) be symmetric on a vector subspace \(V \) of \(C^2[a,b] \) which is closed under the operation of complex conjugation of functions. If \(f(b)f'(b) - f(a)f'(a) \leq 0 \) for all real-valued functions \(f \) in \(V \) then \(T \) has no negative eigenvalues.

Proof: Let \(\lambda \) be an eigenvalue of \(T \) on \(V \) and let \(f \) be an eigenfunction of \(T \) on \(V \) corresponding to \(\lambda \); that is, \(f \) is a nonzero function in \(V \) such that \(Tf = \lambda f \). This last condition is equivalent to

\[f''(x) + \lambda f(x) = 0 \quad \text{for all } x \in [a,b]. \]

Take the complex conjugate of this identity, and use the fact that \(\lambda \) is a real number (cf. Theorem 2) to obtain \(\overline{f''(x)} + \lambda \overline{f(x)} = 0 \) for all \(x \in [a,b] \). Thus \(T \overline{f} = \lambda \overline{f} \), so \(\overline{f} \) is an eigenfunction of \(T \) on \(V \) corresponding to \(\lambda \). Consequently, at least one of the functions

\[\phi = \text{Re}(f) = \frac{1}{2} \left(f + \overline{f} \right) \quad \text{or} \quad \psi = \text{Im}(f) = \frac{1}{2i} \left(f - \overline{f} \right) \]

is not the zero function and hence is a real-valued eigenfunction of \(T \) on \(V \) corresponding to \(\lambda \).

Suppose for the sake of argument that \(\phi \neq 0 \). Observe that

\[\lambda \langle \phi, \phi \rangle = \langle T \phi, \phi \rangle = \int_a^b -\phi''(x) \overline{\phi(x)} dx = \int_a^b -\phi''(x) \phi(x) dx = -\phi(b) \overline{\phi(b)} + \phi'(a) \overline{\phi(a)} + \int_a^b (\phi'(x))^2 dx. \]

Since the last member of this identity is nonnegative and \(\langle \phi, \phi \rangle \) is positive, it follows that \(\lambda \geq 0 \). Q.E.D.

Example 7. All the eigenvalues of \(T = -\frac{d^2}{dx^2} \) on \(V_D = \{ f \in C^2[0,\pi]: f(0) = f(\pi) = 0 \} \) satisfy \(\lambda \geq 0 \).

Note: You will need to generalize Theorem 3 and its proof in order to work #1(c) on “Additional Problems for Section 5.3”.
1. (a) Let \(n \) be a nonnegative integer. Show that the operator \(T \) given by
\[
Tf(r) = \frac{1}{r} \frac{d}{dr} \left(r \frac{df}{dr} \right) - \frac{n^2}{r^2} f(r) \quad (0 < r \leq 1)
\]
is symmetric on the vector space
\[
V_B = \{ f \in C^2(0,1] : f(1) = 0, f \text{ and } f' \text{ bounded on } (0,1] \}
\
equipped with the inner product
\[
\langle f, g \rangle = \int_0^1 f(r)g(r)r dr.
\]

(b) Show that the eigenvalues of \(T \) on \(V_B \) are real numbers.

(c) Are the eigenvalues of \(T \) on \(V_B \) positive? Justify your answer.

(d) Are the eigenfunctions of \(T \) on \(V_B \), corresponding to distinct eigenvalues, orthogonal on \((0,1) \) relative to the inner product (*)? Justify your answer.

2. Use separation of variables to solve the variable density vibrating string problem:
\[
\frac{1}{(1+x)^2} u_{tt} - u_{xx} = 0 \quad \text{for } 0 < x < 1, \ 0 < t < \infty,
\]
\[
u(0,t) = 0 \quad \text{and} \quad u(1,t) = 0 \quad \text{for } 0 \leq t < \infty,
\]
\[
u(x,0) = x(1-x)\sqrt{1+x} \quad \text{and} \quad u_t(x,0) = 0 \quad \text{for } 0 \leq x \leq 1.
\]

Hints on 2: (a) Show that the operator \(T \) given by \(Tf(x) = -(1+x)^2 f''(x) \) is symmetric on
\[
V_B = \{ f \in C^2[0,1] : f(0) = 0 = f(1) \}, \text{ equipped with the inner product } \langle f, g \rangle = \int_0^1 f(x)g(x)(1+x)^{-2} dx.
\]

Conclude that all the eigenvalues \(\lambda \) of the problem \(X''(x) + \frac{\lambda}{(1+x)^2} X(x) = 0, \ X(0) = 0 = X(1) \) are real.

(b) Show that (nearly) all solutions to \(X''(x) + \frac{\lambda}{(1+x)^2} X(x) = 0 \) on \((0,1) \) are of the form \(X(x) = (1+x)^\gamma \)
where \(\alpha \) is an appropriately chosen (possibly complex) constant. Explicitly, show that the general solution is:
\[
X(x) = (1+x)^{1/2} \left[c_1 \left(1+x \right)^{\frac{\sqrt{4\lambda-1}}{2}} + c_2 \left(1+x \right)^{-\frac{\sqrt{4\lambda-1}}{2}} \right] \quad \text{if } 1-4\lambda > 0,
\]
\[
X(x) = (1+x)^{1/2} \left[c_1 + c_2 \ln(1+x) \right] \quad \text{if } 1-4\lambda = 0,
\]
\[
X(x) = (1+x)^{1/2} \left[c_1 \cos \left(\frac{\sqrt{4\lambda-1}}{2} \ln(1+x) \right) + c_2 \sin \left(\frac{\sqrt{4\lambda-1}}{2} \ln(1+x) \right) \right] \quad \text{if } 1-4\lambda < 0.
\]