Mathematies 325
Lecture Notes for Section 5.4: Completeness

Definition. Any pair of boundary conditions
*) {alf(a)+ﬁif(b)+hf’(a)+51f'(b)=0
a f(@y+ B f(B)+7y, [ (a)+8,f(b)=0

2
where @, B;, 7;, and 8, (j =12} are real constants, is called symmetric for the operator T = -% if

=0

)L 1
forall £ and f,in C*[a,b]satisfying (*).

Example 1. The homogeneous Dirichlet boundary conditions are of the form (*):
0=f(@=1f(@)+0f(BD)+0f"(@)+0f'(B)=0 (ey=1, =0, ,=0, 5, =0)
0=FB)=0f(@)+1/O)+0f (@+0f'(0)=0 (a,=0, =1 7,=0, 5,=0).

Notes: (2) In a similar way, it is easy to see that the homogeneous Neumann, periodic, and Robin
boundary conditions can also be written in the form (¥).

(b) Forall £, andf, in ¥, ={f e C*[a,b]: f(a)=0= f(b)} we have

[AQAED-FAED] =0

2

so the homogeneous Dirichlet boundary conditions are symmetric for the operator 7' =— o
x

2

Homework A. Show that the following boundary conditions are symmetric for the operator 7 = ——:
(1) homogeneous Neumann boundary conditions: f'(a)=0= f'(b);

(2) homogeneous periodic boundary conditions: f(a) = f(b) and f'(a)= f'(d);

(3) homogencous Robin boundary conditions: ./ (@y=af(a)=0= F'(b)+ B f(b).

. 2
Theorem 1. Consider the eigen_yalue problem for the operator T = el :

2
—X"(x)=AX(x) in(a, b)
subject to symmetric boundary conditions
{alf(a) + )Blf(b) "”y]f' (a)+ 51f (6)=0
a, f(@)+ P f D)+, /(@) + 6,/ (b)=0
with real constants @, ,, 7, and ; (j=1,2). Then the eigenvalues of this problem form an infinite

sequence 4, <A, 4, 5., and limA, = +oo.

Proof: See Weinberger’s A First Course in Partial Differential Equations, pp. 162-5.

Note: Chapter 11 of Strauss has the proof of analogous statements for symmetric boundary value

problems associated with the Helmholtz equation —V°z = Au on domains w1th ‘smooth” boundary in
dimensions 2 and 3. :



Let X,, X, X, ... be eigenfunctions corresponding to the cigenvalues 4, 4,, 4;, ... of the problem
in Theorem 1. Then according to Theorem 1 and the Gram-Schmidt orthogonalization process (cf.

b
exercise #10 of Section 5.3), we may assume that (X s X j) = JX (X)X (x)dx =0 if i# j. Thatis, the

complete sequence of eigenfunctions {X j}m ] is an orthogonal set of functions on (a,5).

Let f be any square-integrable function on (a, b). We can form the Fourier series ECHX S(x)of f

n=1

o

with respect to {Xj}j=1 , where ¢, = M forn=12.3,...

(X, X,
Question: In what sense does the Fourier series of f represent the function f on (a,b)?

There are three notions of convergence which can be used to help answer this question.

I% —convergence: We say that the series > ¢, X, (x) convergesto f inthe I? (ot mean-square)

n=l

sense on (a,b) if

5 12
dx} —0 as N —»«w,

dz[f,zchHHﬂf(x)mgc,,x,xx)

. . - - . sl - . .
Note: In science, engineering, and communications, I% — converegence 1s often called “convergence 1n
—_— 2 =]

» 112
energy”’ because ( ﬂX (t)]2 dz‘] represents the energy of the signal X' =X () ona<t< b.
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Uniform Convergence: We say that the series chX ,(x) converges uniformly to f on [a,5]
n=1
provided

dw (fiichnJ = max
n=l1

asx<h

f(0)=26,X,(x)

—0 as N = w0,
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Pointwise Convergence: We say that the series Zc”X ,{x) converges pointwise to f on (a,b)

=]
provided, for each point x, in (a,b),

f(x(]) - chXn ('x())

-3 as N -» w0,
n=]
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The following homework exercises in Section 5.4 relate the three types of convergence.

Uniform convergence implies pointwise convergence.
Uniform convergence implies I* - convergence.

{Pointwise convergence does not imply uniform convergence.

Pointwise convergence does not imply I? — convergence,

I2 — convergence cossmszenec does not imply pointwise convergence.
(Therefore, by #2 and #4, J2 — convergence does not imply uniform convergence.)

Please see the solutions of these problems in the library for details. These relationships are illustrated by
the following Venn diagram. )
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Convergence theorems for the three types of convergence of Fourier series are stated in the text and
are reproduced on the next page. That page will be made available to you while you take hour exam IIL
We will not cover the proofs of these three theorems in this course; Mathematics 315 (Introduction to
Real Analysis) covers proofs of results such as these. Instead, we will concentrate on learning how to
use these theorems to help us solve partial differential equations problems.



Convergence Theorems

Consider the eigenvalue problem

(1 X"(x)+AX(x)=0 in a <x <& with any symmetric boundary conditions

and let &= {X Xy, X 3,...} be the complete orthogonal set of eigenfunctions for (1).  Let f be any

absolutely integrable function defined on a <x<b. Consider the Fourier series for f* with respect to
O

where

Theorem 2. (Uniform Convergence) If
() f(x),/"(x), and f"(x) exist and are continuous for a<x <) and

(ii) f satisfies the given symmetric boundary conditions,

then the Fourier series of f converges uniformly to f on [a,b].

Theorem 3. (I’ — Convergence) If
b
i (@f dx <o
then the Fourier series of f convergesto / in the mean-square sense in (a, b).

Theorem 4, (Pointwise Convergence of Classical Fourier Series)
(i) If f is a continuous functionon ¢ £x<b and f'is piecewise continuous on g < x < b, then the

classical Fourier series (full, sine, or cosine) at x converges pointwise to f (r) in the open interval

a<x<b.

(i) If £ is a piecewise continuous function on e <x <5 and f'is piecewise continuous on
a < x <b, then the classical Fourier series (full, sine, or cosing) converges pointwise at every point x in
(~o0,). The sum of the Fourier series is

S L)

2

#=1

for all x in the open interval (a.b).

Theorem 400, If f isa function of period 2/ on the real line for which f and f' are piecewise

7)) er(e)

continuous, then the classical full Fourier series converges to for every real x.



(L) = (-1,1) so R=i

Example 1. (Similar to #7 in Section 5.4) Consider the 2-periodic function f defined on one period by

1 if =1<x<0, %
)= 0<x<l. &= {1, ff:w(il‘"ﬂ,cas@'ifx)}« .
(a) Fmd the full Fourier series of f in the 1nte1'Va1 ( 1,1). / -

(b) Write the sum of the first three nonzero terms of the full Fourier series of f and sketch the graph of
this sum on the same axes as f.

(c) Does the full Fourier series of f converge in the I* — sense on (-1,1)?
(d) Does the full Fourier series of f converge pointwise on (-1,1)7
(e) Does the full Fourier series of f converge uniformly on {-1 1]‘?
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#xample 2, Consider the 1-periodic function f given on one period by
{m@mv&} ' f2x if 0<x<1/2, \ (o 2) = (oe) so A=1i
~ = i? 2x if 1/2<x<l1. / ’ - )
{a) Find the Fourier sine sexies of / in the interval [0,11.
(b} Write the sum of the first three nonzero terms of the Fourier sine series of f and sketch the graph of

this sum on the same axes as .
(c) Does the Fourier sine series of f converge in the I* — sense on [0,1]?
(i} Does the Fourier ¢lne series of f converge pointwise on [0,1]?
(e} Does the Fourler sine senies of f converge uniformly on [0,1]7
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Least-Sguare Approximaiibn and the > —Theory of Fourier Series

Tet {1 X m be an orthogonal set of functions on (a,b) and let f be a square-integrable function on
J =l q g

(a,b). Fixaninteger N 21.

Question: How should we choose the N constants ¢;, ..., ¢y SO that the square error

N N o[ N 2
d, ( e X, J = ﬂ F@=e, X, ()
n=l a n=l
N '
between f and the orthogonal polynomial Z ¢, X, is as small as possible?
n=l

Amnswer: {(Theorem 5 in Section 5.4) Choose the constants 10 be the Fourier coefficients of f with

respect to {XJ V' oon {a.b):

Joje=i

o ALK 1N,
' '(\‘Xn * X

I

Mate: The proof techniques used 1o answer the quest1on above lead to two 1mp0rtant results:

Bessel’s Inequality: Z]c”\' j|Xn(x)| dx < _ﬂ f (x)[ d,

n=}

on (a,b), and

o
which is vatid for any osthogonal set of functions {XJ} .
-

Parseval’s Identity:

of [, d = 7 o,

=

which is vaiid if .,

[——

_is a compiete orthogonal set of functions on (a,b). (Seep. 128 for the

A=

definition of complete.) 1t is important to point out that the coefficients ¢, in both Bessel’s inequality

P n . v P — . . . =
and Parseval’s identity are the Fourier coefficients of f* with respect to {X j} L
. 7=

Fxample 3. (414 in Section 5.4) Find the sum £(6)= 2—16—

n=1:n

So].u.tien: It is routine to check that the Fourier sine series of f(x) = x’—x on [0,1] is

12 & (-1 sin{mrx)

. By Parseval’s identity we have

' }TS n:f i'?l)

. '] 1/) 1)" 2 i 1

" _ s

Z-\- (3 - jsinz(nﬁx)dx = j-(x3 —x) dx.

n=1 TR o 0

2
12(-D" 1

Evaluating ihe integrals gives z | 5 = —— and hence,

n:ii ﬂ- n
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