1. (30 pts.) Consider the operator \(T = -\frac{d^2}{dx^2} \) on the space \(V = \{ \varphi \in C^2[0, \pi]; \varphi(0) = 0 \text{ and } \varphi(\pi) = 0 \} \).

(a) Show that \(T \) is a symmetric operator on \(V \).

(b) Are all the eigenvalues of \(T \) on \(V \) real numbers? Justify your answer.

(c) Are the eigenfunctions of \(T \) on \(V \) corresponding to distinct eigenvalues orthogonal on \([0, \pi] \)? Why?

(d) Are all the eigenvalues of \(T \) on \(V \) nonnegative? Justify your answer.

(e) Compute all the eigenvalues and eigenfunctions for the operator \(T \) on \(V \).

\[\begin{align*}
&\text{(a) Let } \varphi_1 \text{ and } \varphi_2 \text{ belong to } V. \text{ Then } \int_0^\pi \varphi_1(x) \frac{d^2}{dx^2} \varphi_2(x) \, dx = -\int_0^\pi \frac{d}{dx} \left(\varphi_1(x) \frac{d}{dx} \varphi_2(x) \right) \, dx = -\left[\varphi_1(x) \varphi_2''(x) \right]_0^\pi - \int_0^\pi \varphi_1(x) \varphi_2''(x) \, dx.

&\text{But } \varphi_2(0) = 0 = \varphi_2'(0) \text{ and } \varphi_2(\pi) = 0 = \varphi_2(\pi) \text{ imply } \left[\varphi_1(x) \varphi_2''(x) \right]_0^\pi = 0.

&\therefore \int_0^\pi \varphi_1(x) \varphi_2''(x) \, dx = \left< \varphi_1, \varphi_2'' \right> \text{, This shows that } T \text{ is a symmetric operator on } V.

&\text{(b) By Theorem 2 in Sec. 5.3, all the eigenvalues of the symmetric operator } T \text{ on } V \text{ are real.}

&\text{(c) By Theorem 1 in Sec. 5.3, eigenfunctions corresponding to distinct eigenvalues of the symmetric operator } T \text{ on } V \text{ are orthogonal on } 0 \leq x \leq \pi.

&\text{(d) If } \varphi \text{ is any real-valued function belonging to } V \text{ then } \varphi(x) \varphi'(x) \Big|_0^\pi = \varphi(0) \varphi'(0) - \varphi(\pi) \varphi'(\pi) = 0. \text{ Therefore the symmetric operator } T \text{ on } V \text{ has no negative eigenvalues by Theorem 3 in Sec. 5.3.}

&\text{(e) To find the eigenvalues and eigenfunctions for the operator } T \text{ on } V, \text{ we need to find all (complex) numbers } \lambda \text{ for which there corresponds a nonzero function} \]

φ in V satisfying $T\varphi = \lambda \varphi$. That is, we need to solve the eigenvalue problem

$$\varphi''(x) + \lambda \varphi(x) = 0, \quad \varphi(0) = 0, \quad \varphi'(\pi) = 0.$$

By parts (b) and (c) of this problem we know that λ is real and $\lambda \geq 0$.

(10) **Case 1:** $\lambda > 0$, say $\lambda = \beta^2$ where $\beta > 0$.

The general solution of (1) is $\varphi(x) = c_1 \cos(\beta x) + c_2 \sin(\beta x)$, where c_1 and c_2 are arbitrary constants. Note that $\varphi'(x) = -\beta c_1 \sin(\beta x) + \beta c_2 \cos(\beta x)$. Applying (2) we find $0 = \varphi(0) = c_1 \cos(0) + c_2 \sin(0) = c_1$. Applying (3) yields $0 = \varphi'(\pi) = -\beta c_1 \sin(\beta \pi) + \beta c_2 \cos(\beta \pi) = \beta c_2 \cos(\beta \pi)$. In order that φ be nonzero it is necessary that $c_2 \neq 0$ and hence $\cos(\beta \pi) = 0$. Since cosine vanishes only at odd multiples of $\pi/2$, it follows that $\beta \pi = (2n-1)\pi/2$ so $\beta_n = \frac{2n-1}{2}$ ($n=1, 3, \ldots$)

Therefore

$$\lambda_n = \beta_n^2 = \left(\frac{2n-1}{2}\right)^2 \quad (n=1, 3, \ldots)$$

$$\varphi_n(x) = \sin\left((2n-1)\frac{x}{2}\right) \quad (n=1, 3, \ldots)$$

are the eigenvalues and eigenfunctions of T on V, respectively. (See case 2 below which shows that $\lambda = 0$ is not an eigenvalue of T on V.)

(2) **Case 2:** $\lambda = 0$.

The general solution of (1) in this case is $\varphi(x) = c_2 x + c_1$, where c_1 and c_2 are arbitrary constants. Note that $\varphi'(x) = c_2$. Applying (2) and (3) yield

$$0 = \varphi(0) = c_2(0) + c_1 = c_1$$

and

$$0 = \varphi'(\pi) = c_2 \cdot \pi$$

Therefore $\varphi = 0$ so $\lambda = 0$ is not an eigenvalue of T on V.

2. (30 pts.) (a) Show that the Fourier series of the function $f(x) = x(2\pi - x)$ with respect to the orthogonal set of functions $\Phi = \left\{ \sin \left(\frac{(2n-1)x}{2} \right) \right\}_{n=1}^{\infty}$ on the interval $[0, \pi]$ is

$$\sum_{n=1}^{\infty} \frac{32}{\pi} \frac{\sin \left(\frac{(2n-1)x}{2} \right)}{(2n-1)}$$

(b) Write $S_2f(x)$, the second Fourier partial sum of the Fourier series of f with respect to Φ, and sketch the graphs of f and S_2f over the interval $0 \leq x \leq \pi$ on the same set of coordinate axes. (To save time, raise your hand and I will come to your seat and grade your graphs from your calculator's display.)

(c) Does the Fourier series of f with respect to Φ converge to f uniformly on $[0, \pi]$? Justify your answer.

Solutions:

(a) The Fourier series of f with respect to Φ on $[0, \pi]$ is

$$f(x) \sim \sum_{n=1}^{\infty} b_n \sin \left(\frac{(2n-1)x}{2} \right)$$

where $b_n = \frac{\langle f, \varphi_n \rangle}{\langle \varphi_n, \varphi_n \rangle} = \frac{\int_0^\pi f(x) \varphi_n(x) \, dx}{\int_0^\pi \varphi_n(x)^2 \, dx} = \frac{\int_0^\pi f(x) \sin \left(\frac{(2n-1)x}{2} \right) \, dx}{\int_0^\pi \sin^2 \left(\frac{(2n-1)x}{2} \right) \, dx}$

Thus,

$$f(x) \sim \frac{32}{\pi} \sum_{n=1}^{\infty} \frac{\sin \left(\frac{(2n-1)x}{2} \right)}{(2n-1)^3}$$

is the Fourier series of f with respect to Φ.

(b) $S_2f(x) = \frac{32}{\pi} \sum_{n=1}^{2} \frac{\sin \left(\frac{(2n-1)x}{2} \right)}{(2n-1)^3}$

$y = f(x) = x(2\pi - x)$

(The graph of $y = S_2f(x)$ was indistinguishable from $y = f(x)$ on an HP-49G.)
7 pts: (c) We apply Theorem 2 in Sec. 5.4. (See the attached sheet on convergence theorems for a statement of this theorem.) Note that

\[f(x) = x(2\pi - x), \quad f'(x) = 2\pi - 2x, \quad \text{and} \quad f''(x) = -2 \quad \text{exist and are symmetric for } 0 \leq x \leq \pi. \quad \text{Also, } f \text{ satisfies the boundary conditions.} \]

(3) \[f(0) = 0 \quad \text{and} \quad f'(\pi) = 0 \quad \text{that lead to the eigenfunctions } \Phi = \left\{ \sin\left(\frac{2n-1}{2}\pi x\right) \right\}_{n=1}^{\infty} \quad \text{on } [0,\pi]. \quad \text{(See problem 1.) By Theorem 2 in Sec. 5.4, the Fourier series of } f \text{ w.r.t. } \Phi \text{ converges uniformly to } f \text{ on } [0,\pi]. \]
3. (40 pts.) Let \(a \) be a positive constant. Find a solution to the following problem. You may use the results stated in problems 1 and 2, even if you did not successfully solve those problems.

\[
\begin{align*}
 u_t - u_{xx} + au &= 0 \quad \text{for} \quad 0 < x < \pi, \quad 0 < t < \infty, \\
 u(0,t) &= 0 \quad \text{and} \quad u_x(\pi,t) &= 0 \quad \text{if} \quad 0 \leq t < \infty, \\
 u(x,0) &= x(2\pi - x) \quad \text{if} \quad 0 \leq x \leq \pi.
\end{align*}
\]

Bonus (10 pts.): Is there at most solution to the problem above that is continuous on the strip \(0 \leq x \leq \pi, \quad 0 \leq t < \infty \)? Justify your answer.

We use the method of separation of variables. Let \(u(x,t) = X(x)T(t) \) be a nontrivial solution of the homogeneous portion of this problem: \(\odot - \odot - \odot \). Substituting in \(\odot \) yields

\[
X(x)T'(t) - X''(x)T(t) + aX(x)T(t) = 0.
\]

Rearranging yields \(\frac{X''(x)}{X(x)} = \frac{-T'(t) - aT(t)}{T(t)} \) constant = \(\gamma \). Substituting \(u(x,t) = \gamma(x)T(t) \) into \(\odot \) and \(\odot \) yields

\[
X(x)T(t) = 0 \quad \text{and} \quad X'(x)T(t) = 0 \quad \text{for all} \quad t \geq 0. \quad \text{Since} \quad X(x) \neq 0 \quad \text{implies} \quad U(x,t) = \gamma(x)T(t) = 0 \quad \text{for all} \quad 0 \leq x \leq \pi \quad \text{and} \quad t \geq 0, \quad \text{this is impossible; \(u \) was assumed to be nontrivial.}
\]

Therefore \(\gamma(x) = 0 \). A similar argument shows \(\gamma(t) = 0 \). Summarizing, we have the system:

\[
\begin{align*}
 \begin{cases}
 \gamma(x) + \lambda \gamma(x) &= 0, \quad \gamma(0) = 0 \quad \text{and} \quad \gamma'(\pi) = 0, \\
 \gamma'(t) + (a + \lambda)\gamma(t) &= 0.
 \end{cases}
\end{align*}
\]

By problem 1, the eigenvalues of \(\odot - \odot - \odot \) are \(\lambda_n = \left(\frac{2n-1}{\pi} \right)^2 \) and the corresponding eigenfunctions are \(\gamma_n(x) = \sin\left(\frac{2n-1}{\pi} x \right) \) \((n = 1, 2, 3, \ldots) \). The solution of \(\odot \) when \(\lambda = \lambda_n \) is \(\gamma_n(x) = e^{-\left(a + \lambda_n\right) t} \) (up to a constant multiple) so

\[
\gamma_n(x,t) = \gamma_n(x)T_n(t) = \sin\left(\frac{2n-1}{\pi} x \right) e^{-\left(a + \lambda_n\right) t} \quad (n = 1, 2, 3, \ldots) \quad \text{solves} \quad \odot - \odot - \odot.
\]

The superposition principle shows that

\[
\gamma(x,t) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{2n-1}{\pi} x \right) e^{-\left(a + \lambda_n\right) t}
\]

is a formal solution to \(\odot - \odot - \odot \) for any choice of constants \(b_1, b_2, b_3, \ldots \).
To satisfy \(4\) we need

\[x(2\pi-x) = f(x) = u(x,0) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{2n-1}{2}x\right) \]

for all \(0 \leq x \leq \pi\). By problem 2 we should choose \(b_n = \frac{32}{\pi (2n-1)^3}\) for \(n=1,2,3,\ldots\)

Therefore

\[
u(x,t) = \frac{32e^{-at}}{\pi} \sum_{n=1}^{\infty} \frac{e^{-\frac{(n-\frac{1}{2})^2}{2t}}}{(2n-1)^3} \sin\left(\frac{n-\frac{1}{2}}{2}x\right)\]

solves \(1\) \(-\) \(2\) \(-\) \(3\) \(-\) \(4\).

Bonus: Yes, there is only one solution to \(1\) \(-\) \(2\) \(-\) \(3\) \(-\) \(4\). To see this suppose that \(u = u_1(x,t)\) and \(u = u_2(x,t)\) are solutions to \(1\) \(-\) \(2\) \(-\) \(3\) \(-\) \(4\) and consider \(v(x,t) = u_1(x,t) - u_2(x,t)\). Then \(v\) is a solution to the system:

\[
\begin{align*}
\frac{v}{t} - \nabla^2 v &= 0 \quad \text{for} \quad 0 < x < \pi, \quad 0 < t < \infty, \\
v(0,t) &= 0 \quad \text{and} \quad v(\pi,t) = 0 \quad \text{for} \quad 0 \leq t \leq \infty \\
v(x,0) &= 0 \quad \text{for} \quad 0 \leq x \leq \pi.
\end{align*}
\]

Consider the energy function of \(v\):

\[
E(t) = \left(\int_{0}^{\pi} v^2(x,t) \, dx \right)^{1/2} \quad (t > 0).
\]

Then

\[
2E(t) \frac{dE}{dt} = \frac{d}{dt} \int_{0}^{\pi} v^2(x,t) \, dx = \int_{0}^{\pi} \nabla v(x,t) \cdot \frac{\partial v(x,t)}{\partial t} \, dx = \int_{0}^{\pi} 2v(x,t) \frac{dv}{dt}(x,t) \, dx
\]

Substituting for \(\frac{dE}{dt}\) in the integrand in the right member of the above equation
yields
\[
E(t) \frac{dE}{dt} = \int_0^\pi v(x,t) \left[v_x(x,t) - a v(x,t) \right] dx
\]
\[
= -a \int_0^\pi v^2(x,t) dx + \int_0^\pi \frac{dV}{V(x,t) v_x(x,t)} dx
\]
\[
= -a \int_0^\pi v^2(x,t) dx + v(x,t) v_x(x,t) \bigg|_{x=0}^{x=\pi} - \int_0^\pi v_x^2(x,t) dx.
\]

By (11) and (10), we have \(v(x,t) v_x(x,t) \bigg|_{x=0}^{x=\pi} = 0 \). Therefore,
\[
E(t) \frac{dE}{dt} = - \int_0^\pi [a v^2(x,t) + v_x^2(x,t)] dx \leq 0
\]
and it follows that \(E \) is a decreasing function on the interval \(0 \leq t < \infty \).

Thus, for \(t > 0 \),
\[
0 \leq E(t) \leq E(0) = \left(\int_0^\pi v^2(x,0) dx \right)^{\frac{1}{2}} = 0
\]
by (12). By the vanishing theorem (and continuity of \(v \)) it follows that \(v(x,t) = 0 \) for all \(0 \leq x \leq \pi \) and \(t \geq 0 \). That is, \(u_1(x,t) = u_2(x,t) \) for \(0 \leq x \leq \pi \) and \(t \geq 0 \). This shows that the solution found in problem 3 is unique.
Convergence Theorems

Consider the eigenvalue problem

(1) \[X''(x) + \lambda X(x) = 0 \quad \text{in} \quad a < x < b \] with any symmetric boundary conditions

and let \(\Phi = \{X_1, X_2, X_3, \ldots\} \) be the complete orthogonal set of eigenfunctions for (1). Let \(f \) be any absolutely integrable function defined on \(a \leq x \leq b \). Consider the Fourier series for \(f \) with respect to \(\Phi \):

\[\sum_{n=1}^{\infty} A_n X_n(x) \]

where

\[A_n = \frac{\langle f, X_n \rangle}{\langle X_n, X_n \rangle} \quad (n = 1, 2, 3, \ldots). \]

Theorem 2. (Uniform Convergence) If

(i) \(f(x), f'(x), \) and \(f''(x) \) exist and are continuous for \(a \leq x \leq b \) and

(ii) \(f \) satisfies the given symmetric boundary conditions,

then the Fourier series of \(f \) converges uniformly to \(f \) on \([a, b]\).

Theorem 3. (\(L^2 \)-Convergence) If

\[\int_a^b |f(x)|^2 \, dx < \infty \]

then the Fourier series of \(f \) converges to \(f \) in the mean-square sense in \((a, b)\).

Theorem 4. (Pointwise Convergence of Classical Fourier Series)

(i) If \(f \) is a continuous function on \(a \leq x \leq b \) and \(f' \) is piecewise continuous on \(a \leq x \leq b \), then the classical Fourier series (full, sine, or cosine) at \(x \) converges pointwise to \(f(x) \) in the open interval \(a < x < b \).

(ii) If \(f \) is a piecewise continuous function on \(a \leq x \leq b \) and \(f' \) is piecewise continuous on \(a \leq x \leq b \), then the classical Fourier series (full, sine, or cosine) converges pointwise at every point \(x \) in \((-\infty, \infty)\). The sum of the Fourier series is

\[\sum_{n=1}^{\infty} A_n X_n(x) = \frac{f(x^+) + f(x^-)}{2} \]

for all \(x \) in the open interval \((a, b)\).

Theorem 4 \(\Rightarrow \). If \(f \) is a function of period \(2l \) on the real line for which \(f \) and \(f' \) are piecewise continuous, then the classical full Fourier series converges to \(\frac{f(x^+) + f(x^-)}{2} \) for every real \(x \).
Exam III
Math 325
Spring 2011

n: 23
mean: 66.9 median: 75
standard deviation: 27.6

<table>
<thead>
<tr>
<th>Distribution of Scores</th>
<th>Graduate Letter Grade</th>
<th>Undergraduate Letter Grade</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-100</td>
<td>A</td>
<td>A</td>
<td>8</td>
</tr>
<tr>
<td>73-86</td>
<td>B</td>
<td>B</td>
<td>4</td>
</tr>
<tr>
<td>60-72</td>
<td>C</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>50-59</td>
<td>C</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>0-49</td>
<td>F</td>
<td>D</td>
<td>7</td>
</tr>
</tbody>
</table>