1. (28 pts.) (a) Verify that \(u_p(x, y) = e^y \) is a particular solution to the linear, nonhomogeneous partial differential equation \(yu_x - xu_y = \left(y^2 - x^2 \right) e^y \).
(b) Find the general solution of the linear, homogeneous partial differential equation \(yu_x - xu_y = 0 \).
(c) Find the solution of the partial differential equation \(yu_x - xu_y = \left(y^2 - x^2 \right) e^y \) satisfying the auxiliary condition \(u(x, 0) = x^6 + 1 \) for all real \(x \).

2. (28 pts.) Classify the type - elliptic, parabolic, or hyperbolic - of the partial differential equation
\[
u x + u_y - 2u_{xy} = \sin(x - y) \]
and find, if possible, the general solution in the \(xy \)-plane.

3. (29 pts.) A homogeneous solid material occupying \(D = \{(x, y, z) \in \mathbb{R}^3 : 4 \leq x^2 + y^2 + z^2 \leq 100\} \) is completely insulated and its initial temperature at position \((x, y, z) \) in \(D \) is \(200 / (x^2 + y^2 + z^2) \).
(a) Write, without proof or derivation, the partial differential equation and initial/boundary conditions that completely govern the temperature \(u(x, y, z, t) \) at position \((x, y, z) \) in \(D \) and time \(t \geq 0 \).
(b) Use the divergence theorem to help show that the heat energy \(H(t) = \iiint_D c \rho u(x, y, z, t) dV \) of the material in \(D \) at time \(t \) is a constant function of time. Here \(c \) and \(\rho \) denote the (positive, constant) specific heat and mass density, respectively, of the material in \(D \).
(c) Compute the (constant) steady-state temperature that the material in \(D \) reaches after a long time.

4. (28 pts.) Solve \(u_t - u_{xx} = 0 \) in the upper half-plane \(-\infty < x < \infty \), \(0 < t < \infty \), subject to the initial condition \(u(x, 0) = x^2 \) if \(-\infty < x < \infty \). Note: You may find useful the identity \(\int_{-\infty}^\infty p^2 e^{-p^2} dp = \sqrt{\pi} / 2 \).

5. (29 pts.) Let \(f(x, t) = \begin{cases} \sqrt{\pi} / 2 & \text{if } |x| < |t|, \\ 0 & \text{otherwise}. \end{cases} \) Use Fourier transform methods to solve
\(u_t - u_{xx} = f(x, t) \) in the \(xt \)-plane subject to the initial conditions \(u(x, 0) = 0 = u_t(x, 0) \) for all real \(x \).

6. (29 pts.) (a) Show that the \(2\pi \)-periodic function determined by the formula \(f(x) = x^2 \) for \(x \) in the interval \([-\pi, \pi] \) has full Fourier series \(\frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n \cos(nx)}{n^2} \).
(b) Discuss the pointwise convergence or lack thereof for the full Fourier series of \(f \) at each point \(x \) in the interval \([-\pi, \pi] \).
(c) Use the results of parts (a) and (b) to help find the sums of the series \(\sum_{n=1}^{\infty} (-1)^n / n^2 \) and \(\sum_{n=1}^{\infty} 1 / n^2 \).

7. (29 pts.) (a) Find a solution to the damped wave equation
\(u_t - u_{xx} + 2u_t = 0 \) in \(0 < x < \pi, \ 0 < t < \infty \).
satisfying the boundary conditions

(2)-(3) \[u_x(0,t) = 0 = u_x(\pi,t) \text{ for } 0 \leq t < \infty, \]
(4) \[u(x,0) = 0 \text{ for } 0 \leq x \leq \pi, \]
(5) \[u_x(x,0) = x^2 \text{ for } 0 \leq x \leq \pi. \]

(b) Show that if \(u = u(x,t) \) satisfies (1)-(2)-(3) then its energy function

\[E(t) = \frac{1}{2} \left[\int_0^\pi \left[u_t^2(x,t) + u_x^2(x,t) \right] dx \right] \]

is decreasing on \(0 \leq t < \infty. \)

(c) Is the solution to the problem in part (a) unique? Justify your answer.
A Brief Table of Fourier Transforms

\[f(x) \]

\[\hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-i\xi x} \, dx \]

A. \[
\begin{cases}
1 & \text{if } -b < x < b, \\
0 & \text{otherwise}.
\end{cases}
\]

\[\frac{\sqrt{2 \sin (b \xi)}}{\xi} \]

B. \[
\begin{cases}
1 & \text{if } c < x < d, \\
0 & \text{otherwise}.
\end{cases}
\]

\[\frac{e^{-i \xi c} - e^{-i \xi d}}{i \xi \sqrt{2\pi}} \]

c \quad \text{and} \quad d

C. \[
\frac{1}{x^2 + a^2} \quad (a > 0)
\]

\[\frac{\sqrt{\pi} e^{-a|\xi|}}{\sqrt{2} \quad a} \]

D. \[
\begin{cases}
x & \text{if } 0 < x \leq b, \\
2b - x & \text{if } b < x < 2b, \\
0 & \text{otherwise}.
\end{cases}
\]

\[-1 + 2e^{-ib\xi} - e^{-2ib\xi} \]

E. \[
\begin{cases}
e^{-a x} & \text{if } x > 0, \\
0 & \text{otherwise}.
\end{cases}
\]

\[\frac{1}{(a + i\xi) \sqrt{2\pi}} \]

F. \[
\begin{cases}
e^{a x} & \text{if } b < x < c, \\
0 & \text{otherwise}.
\end{cases}
\]

\[\frac{e^{(a - i\xi)c} - e^{(a - i\xi)b}}{(a - i\xi) \sqrt{2\pi}} \]

G. \[
\begin{cases}
e^{ix} & \text{if } -b < x < b, \\
0 & \text{otherwise}.
\end{cases}
\]

\[\frac{\sqrt{2 \sin (b (\xi - a))}}{\xi - a} \]

H. \[
\begin{cases}
e^{ix} & \text{if } c < x < d, \\
0 & \text{otherwise}.
\end{cases}
\]

\[\frac{e^{i\xi(c-a)} - e^{i\xi(d-a)}}{i(\xi - a) \sqrt{2\pi}} \]

I. \[e^{-ax^2} \quad (a > 0) \]

\[\frac{1}{\sqrt{2a}} e^{-\xi^2/(4a)} \]

J. \[\frac{\sin(ax)}{x} \quad (a > 0) \]

\[\begin{cases}
0 & \text{if } |\xi| \geq a, \\
\frac{\pi}{2} & \text{if } |\xi| < a.
\end{cases} \]
Fourier Series Convergence Theorems

Consider the eigenvalue problem

\[X''(x) + \lambda X(x) = 0 \quad \text{in} \quad a < x < b \]

with any symmetric boundary conditions of the form

\[\begin{align*}
\alpha_1 f(a) + \beta_1 f(b) + \gamma_1 f'(a) + \delta_1 f'(b) &= 0 \\
\alpha_2 f(a) + \beta_2 f(b) + \gamma_2 f'(a) + \delta_2 f'(b) &= 0
\end{align*} \]

and let \(\Phi = \{X_1, X_2, X_3, \ldots \} \) be the complete orthogonal set of eigenfunctions for (1)-(2). Let \(f \) be any absolutely integrable function defined on \(a \leq x \leq b \). Consider the Fourier series for \(f \) with respect to \(\Phi \):

\[\sum_{n=1}^{\infty} A_n X_n(x) \]

where

\[A_n = \frac{\langle f, X_n \rangle}{\langle X_n, X_n \rangle} \quad (n = 1, 2, 3, \ldots) \]

Theorem 2. (Uniform Convergence) If

(i) \(f(x), f'(x) \), and \(f''(x) \) exist and are continuous for \(a \leq x \leq b \) and

(ii) \(f \) satisfies the given symmetric boundary conditions,

then the Fourier series of \(f \) converges uniformly to \(f \) on \([a, b]\).

Theorem 3. (\(L^2 \)-Convergence) If

\[\int_a^b |f(x)|^2 \, dx < \infty \]

then the Fourier series of \(f \) converges to \(f \) in the mean-square sense in \((a, b)\).

Theorem 4. (Pointwise Convergence of Classical Fourier Series)

(i) If \(f \) is a continuous function on \(a \leq x \leq b \) and \(f'' \) is piecewise continuous on \(a \leq x \leq b \), then the classical Fourier series (full, sine, or cosine) at \(x \) converges pointwise to \(f(x) \) in the open interval \(a < x < b \).

(ii) If \(f \) is a piecewise continuous function on \(a \leq x \leq b \) and \(f'' \) is piecewise continuous on \(a \leq x \leq b \), then the classical Fourier series (full, sine, or cosine) converges pointwise at every point \(x \) in \((-\infty, \infty)\). The sum of the Fourier series is

\[\sum_{n=1}^{\infty} A_n X_n(x) = \frac{f(x^+) + f(x^-)}{2} \]

for all \(x \) in the open interval \((a, b)\).

Theorem 4 \(\infty \). If \(f \) is a function of period \(2l \) on the real line for which \(f \) and \(f' \) are piecewise continuous, then the classical full Fourier series converges to \(\frac{f(x^+) + f(x^-)}{2} \) for every real \(x \).
#1. (a) \(u_p = e^{xy} \) so \((u_p)_x = ye^{xy} \) and \((u_p)_y = xe^{xy} \). Therefore

\[
y(u_p)_x - x(u_p)_y = ye^{xy} - x^2 e^{xy} = (y - x^2) e^{xy}.
\]

(b) Along characteristic curves \(\frac{dy}{dx} = \frac{b(x,y)}{a(x,y)} \), solutions to \(a(x,y)u_x + b(x,y)u_y = 0 \) are constant. Therefore, the characteristic curves of \(yu_x - xu_y = 0 \) are given by \(\frac{dy}{dx} = -\frac{x}{y} \). Separating variables and integrating yields

\[
\frac{y}{2} + c_1 = \int y \, dy = -\int x \, dx = -\frac{x^2}{2} + c_2.
\]

Rearranging, \(\frac{y^2}{2} + x^2 = c \) where \(c \) is an arbitrary constant. When \(c > 0 \), the characteristic curves are circles centered at the origin. Along such a circle, solutions \(u = u(x,y) \) are constant:

\[
u(x, y(x)) = u(x, \pm \sqrt{c - x^2}) = u(0, \pm \sqrt{c}) = f(c).
\]

The general solution of \(yu_x - xu_y = 0 \) is

\[
u(x, y) = f \left(x^2 + y^2 \right)
\]

where \(f \) is a general \(C^1 \)-function of a single real variable.

(c) The general solution of \(yu_x - xu_y = (y^2 - x^2)e^{xy} \) is \(u = u_c + u_p \) where \(u_c \) is the general solution of the associated homogeneous equation \(yu_x - xu_y = 0 \) and \(u_p \) is any particular solution of the nonhomogeneous equation \(yu_x - xu_y = (y^2 - x^2)e^{xy} \). Thus \(u(xy) = f(x^2 + y^2) + e^{xy} \) is the general solution of \(yu_x - xu_y = (y^2 - x^2)e^{xy} \).

To satisfy the auxiliary condition, \(f \) must be chosen such that

\[
x + 1 = u(x, 0) = f(x^2 + 0) + e^{x\cdot0} = f(x^2) + 1
\]

for all real \(x \). Therefore \(f(w) = w^3 \) for all \(w \geq 0 \) so

\[
u(x, y) = (x^2 + y^2)^3 + e^{xy}.
\]
\#2. \[u_{xx} - 2u_{xy} + u_{yy} = \sin(x-y) \]

\[B^2 - 4AC = (-2)^2 - 4(1)(1) = 0. \] Therefore the equation is of \textit{parabolic type}.

The pde can be expressed in the form

\[\left(\frac{\partial^2}{\partial x^2} - 2 \frac{\partial}{\partial x} \frac{\partial}{\partial y} + \frac{\partial^2}{\partial y^2} \right) u = \sin(x-y) \]

or

\[(\frac{\partial}{\partial x} - \frac{\partial}{\partial y}) (\frac{\partial}{\partial x} - \frac{\partial}{\partial y}) u = \sin(x-y). \]

In order to solve the pde we make the change-of-coordinates

\[
\begin{align*}
\tilde{z} &= -(\beta x - \alpha y) = -(x-y) = x+y, \\
\eta &= \alpha x + \beta y = x-y.
\end{align*}
\]

By the chain rule, for any \(C^1 \) function \(v \) we have

\[\frac{\partial v}{\partial x} = \frac{\partial v}{\partial \tilde{z}} \frac{\partial \tilde{z}}{\partial x} + \frac{\partial v}{\partial \eta} \frac{\partial \eta}{\partial x} = \frac{\partial v}{\partial \tilde{z}} + \frac{\partial v}{\partial \eta}, \]

\[\frac{\partial v}{\partial y} = \frac{\partial v}{\partial \tilde{z}} \frac{\partial \tilde{z}}{\partial y} + \frac{\partial v}{\partial \eta} \frac{\partial \eta}{\partial y} = \frac{\partial v}{\partial \tilde{z}} - \frac{\partial v}{\partial \eta}. \]

Consequently, as operators

\[\frac{\partial}{\partial x} = \frac{\partial}{\partial \tilde{z}} + \frac{\partial}{\partial \eta} \quad \text{and} \quad \frac{\partial}{\partial y} = \frac{\partial}{\partial \tilde{z}} - \frac{\partial}{\partial \eta}, \]

so \(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} = 2 \frac{\partial}{\partial \tilde{z}} \). Substituting in \((\ast)\) yields

\[4 \frac{\partial^2 u}{\partial \eta^2} = (2 \frac{\partial}{\partial \eta}) (2 \frac{\partial}{\partial \eta}) u = \sin(\eta). \]

Integrating twice produces

\[\frac{\partial u}{\partial \eta} = \int \frac{1}{4} \sin(\eta) d\eta = \frac{1}{4} \cos(\eta) + C(\tilde{z}) \]

(Integrate w.r.t. \(\eta \) holding \(\tilde{z} \) fixed.)
\#2 (cont.) and
\[u = \int \left[-\frac{1}{T} \cos(y) + c(y) \right] \, dy = -\frac{1}{T} \sin(y) + \eta c(y) + c(y). \]

Using the change-of-coordinates equation yields
\[u(x,y) = -\frac{1}{T} \sin(x-y) + (x-y)f(x+y) + g(x+y) \]
where \(f \) and \(g \) are \(C^2 \)-functions of a single real variable.

\#3. (a) The pde and auxiliary conditions governing the temperature \(u(x,y,z,t) \) at position \((x,y,z)\) in \(D \) at time \(t \geq 0 \) are:

\[\begin{align*}
\frac{\partial u}{\partial t} - k \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) &= 0 & \text{if } & & + x^2+y^2+z^2 < 100 \text{ and } t > 0, \\
\nabla u \cdot \mathbf{n} &= 0 & \text{if } & & x^2+y^2+z^2 = 4 \text{ or } x^2+y^2+z^2 = 100 \text{ and } t > 0, \\
\n\left. u \right|_{t=0} &= \frac{200}{\sqrt{x^2+y^2+z^2}} & \text{if } & & t \leq x^2+y^2+z^2 \leq 100.
\end{align*} \]

(b) Let \(H(t) = \iiint_D c \rho u(x,y,z,t) \, dV \) be the heat energy of the material in \(D \) at time \(t \geq 0 \) where \(c \) and \(\rho \) are the (positive, constant) specific heat and mass density of the material in \(D \). Then
\[\begin{align*}
\frac{dH}{dt} &= \frac{d}{dt} \iiint_D c \rho u(x,y,z,t) \, dV = \iiint_D c \rho \frac{\partial u}{\partial t} (x,y,z,t) \, dV = \\
\iiint_D c \rho k \nabla^2 u \, dV &= \iiint_D c \rho k \nabla u \cdot \mathbf{n} \, dS = \iiint_{\partial D} \mathbf{n} \cdot dS' = 0.
\end{align*} \]

Therefore \(H(t) = H(0) \) for all \(t \geq 0 \).
3(c) Assume \(U = \lim_{t \to \infty} u(x,y,z,t) \) is the (constant) steady-state temperature reached by the material in \(D \) at position \((x,y,z)\). Then

\[
H(0) = \lim_{t \to \infty} H(t) = \lim_{t \to \infty} \iiint_D c_p u(x,y,z,t) \, dv = \iiint_D c_p \lim_{t \to \infty} u(x,y,z,t) \, dv
\]

\[
= \iiint_D c_p U \, dv = c_p U \text{ volume}(D). \quad \text{But}
\]

\[
\text{volume}(D) = \iiint_D dv = \int_0^{2\pi} \int_0^{\pi/2} \int_0^{10} r^2 \sin \phi \, dr \, d\phi \, d\theta = \left[\int_0^{\pi/2} \sin \phi \, d\phi \right] \left[\int_0^{2\pi} d\theta \right] \left[\int_0^{10} r^2 \, dr \right]
\]

\[
= \left[-\cos \phi \right]_0^{\pi/2} \left[(2\pi)(r^3) \right]_0^{10} = \frac{4\pi}{3} (1000 - 8) = \frac{4\pi}{3} (992).
\]

\[
\text{and}
\]

\[
H(0) = \iiint_D c_p u(x,y,z,0) \, dv = \iiint_D c_p \frac{200}{r \sqrt{x^2 + y^2 + z^2}} \, dv = \int_0^{2\pi} \int_0^{\pi} \int_0^{10} c_p \frac{200}{\sqrt{r}} \sin \phi \, d\phi \, d\theta \, dr
\]

\[
= \int_0^{2\pi} \int_0^{\pi} c_p \frac{200}{\sqrt{2}} \left[\sin \phi \right]_0^{\pi/2} \, d\phi \, d\theta = 2\pi c_p (100)(96)(-\cos \phi) \bigg|_0^\pi = 4\pi c_p (9600).
\]

Therefore

\[
U = \frac{H(0)}{c_p \text{ volume}(D)} = \frac{4\pi c_p (9600)}{4\pi c_p (992)} = \frac{28800}{992} = \frac{900}{31} \approx 29.
\]

4. A solution of \(u_t - ku_{xx} = 0 \) in \(-\infty < x < \infty, 0 < t < \infty\), satisfying \(u(x,0) = q(x) \) for all real \(x \) is

\[
u(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} q(y) e^{-\frac{(x-y)^2}{4kt}} \, dy \quad (t > 0).
\]

Taking \(k = 1 \) and \(q(y) = y^2 \) for our problem, we find
\[u(x, t) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} y e^{-\frac{(x-y)^2}{4t}} \, dy \]
Make the change of variables \(p = \frac{y-x}{\sqrt{4t}} \). Then \(dp = \frac{dy}{\sqrt{4t}} \), \(y \to +\infty \) implies \(p \to +\infty \), and \(y \to -\infty \) implies \(p \to -\infty \). Therefore,

\[u(x, t) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \left(x + p \sqrt{4t} \right)^2 e^{-p^2} \, dp = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \left(x^2 + 2px\sqrt{4t} + 4t \right) e^{-p^2} \, dp \]

\[= \frac{x^2}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-p^2} \, dp + \frac{2x}{\sqrt{\pi}} \int_{-\infty}^{\infty} pe^{-p^2} \, dp + \frac{4t}{\sqrt{\pi}} \int_{-\infty}^{\infty} p^2 e^{-p^2} \, dp. \]

But \(\int_{-\infty}^{\infty} e^{-p^2} \, dp = \sqrt{\pi} \), \(\int_{-\infty}^{\infty} pe^{-p^2} \, dp = 0 \) since \(f(p) = pe^{-p^2} \) is an odd function and \(\int_{-\infty}^{\infty} p^2 e^{-p^2} \, dp = \frac{\sqrt{\pi}}{2} \).

Consequently \[u(x, t) = x^2 + 2t \]. Since \(\phi(x) = x^2 \) is not bounded on \(-\infty < x < \infty\), we need to check our answer since technically the formula for \(u = u(x, t) \) is not guaranteed to solve the initial value problem in that case.

But \(u(x, t) = x^2 + 2t \) implies \(u_t = 2 \) and \(u_{xx} = 2 \) so \(u_t - u_{xx} = 2 - 2 = 0 \) for all points \((x, t)\). Also \(u(x, t) = x^2 + 2t \) implies \(u(x, 0) = x^2 \) for all real \(x \). Therefore the boxed function \(u \) above solves the initial value problem.
#5 (Method 1) Let \(u \equiv u(x,t) \) solve (1)-(2)-(3). We take the Fourier transform of both sides of (1) with respect to \(x \) (holding \(t \) fixed):

\[
\frac{\partial^2}{\partial t^2} \hat{u}(s,t) - is \frac{\partial}{\partial t} \hat{u}(s,t) = \hat{f}(s,t) = \hat{f}(s),
\]

(5)

\[
\frac{\partial^2}{\partial t^2} \hat{u}(s,t) + \frac{s^2}{s} \hat{u}(s,t) = \hat{f}(s,t).
\]

The general solution of the second-order, linear, nonhomogeneous ODE (5) in \(t \) (with parameter \(\xi \)) is

\[
\hat{f}(s,t) = U_h(s,t) + U_p(s,t),
\]

where \(U_h(s,t) = c_1(s) \cos(\xi t) + c_2(s) \sin(\xi t) \) is the general solution of the associated homogeneous equation of (5), \(\frac{\partial^2}{\partial t^2} \hat{u}(s,t) + \frac{s^2}{s} \hat{u}(s,t) = 0 \), and \(U_p(s,t) \) is a particular solution of (5). We use variation of parameters to write

\[
U_p(s,t) = v_1(s,t) \cos(\xi t) + v_2(s,t) \sin(\xi t)
\]

where

\[
v_1(s,t) = \int_0^t -Fy_2 \, dt = \int_0^t \frac{\hat{f}(s,\tau) \sin(\xi \tau)}{W(s,\tau)} \, d\tau,
\]

\[
v_2(s,t) = \int_0^t Fy_1 \, dt = \int_0^t \frac{\hat{f}(s,\tau) \cos(\xi \tau)}{W(s,\tau)} \, d\tau,
\]

\(y_1 = \cos(\xi t), \ y_2 = \sin(\xi t) \) form a fundamental set of solutions of (5),

\[
F = \frac{\hat{f}(s,t)}{\xi}, \text{ and }
\]

\[
W = W(s,t) = \begin{vmatrix} \cos(\xi t) & \sin(\xi t) \\ \frac{\partial}{\partial t} \cos(\xi t) & \frac{\partial}{\partial t} \sin(\xi t) \end{vmatrix} = \begin{vmatrix} \cos(\xi t) & \sin(\xi t) \\ -\sin(\xi t) & \cos(\xi t) \end{vmatrix} = \xi
\]

is the Wronskian of \(y_1 \) and \(y_2 \). Thus

\[
\hat{f}(s,t) = c_1(s) \cos(\xi t) + c_2(s) \sin(\xi t) - \cos(\xi t) \int_0^t \frac{\hat{f}(s,\tau) \sin(\xi \tau)}{\xi} \, d\tau + \sin(\xi t) \int_0^t \frac{\hat{f}(s,\tau) \cos(\xi \tau)}{\xi} \, d\tau
\]

(5)

\[
= c_1(s) \cos(\xi t) + c_2(s) \sin(\xi t) + \frac{1}{\xi} \int_0^t \frac{\hat{f}(s,\tau) \sin(\xi (t-\tau))}{\xi} \, d\tau.
\]
Applying the auxiliary condition (2) yields
\[0 = \mathcal{F}(u(t)) \bigg|_{t=0} = c_1(t) + 0 + 0 = c_1(t). \]

Next, observe that
\[
\frac{d}{dt} \mathcal{F}(u(t)) = -3c_1(t)\sin(\epsilon t) + 3c_2(t)\cos(\epsilon t) - 3 \int_0^t \frac{\hat{g}(s, t)\sin(\eta t)}{\eta} ds
\]
\[
- \cos(\epsilon t) \cdot \frac{\hat{g}(s, t)\sin(\eta t)}{\eta} + \sin(\epsilon t) \cdot \frac{\hat{g}(s, t)\cos(\eta t)}{\eta}
\]
so by (3) we have
\[0 = \mathcal{F}(u(t)) \bigg|_{t=0} = \frac{d}{dt} \mathcal{F}(u(t)) \bigg|_{t=0} = 0 + 3c_2(t) - 0 - 0 + 0 + 0 = 3c_2(t). \]

Thus
\[\mathcal{F}(u(t)) = \frac{1}{3} \int_0^t \hat{g}(s, \tau)\sin(\eta (t-\tau)) d\tau. \] (4)

Using formula A in the table of Fourier transforms with \(b = t-\tau \), we see that
\[\frac{\sin(\eta (t-\tau))}{\eta} = \sqrt{\frac{\pi}{2}} \mathcal{F}(\chi_{(-t, t)}(x)). \]

Also, since \(\hat{g}(x,t) = \sqrt{\frac{\pi}{2}} \chi_{(-t,t)}(x) \),
\[\hat{g}(s, \tau) = \sqrt{\frac{\pi}{2}} \mathcal{F}(\chi_{(-t, t)}(x)). \]

Substituting in (4) and using the convolution formula \(\mathcal{F}(g \ast h)(s) = \sqrt{2\pi} \mathcal{F}g(s) \mathcal{F}h(s) \) leads to
\[\mathcal{F}(u(t)) = \int_0^t \sqrt{\frac{\pi}{2}} \mathcal{F}(\chi_{(-\tau, \tau)}(x)) \sqrt{\frac{\pi}{2}} \mathcal{F}(\chi_{(-t, t-\tau)}(x)) d\tau \]
\[
= \frac{\pi}{2} \int_0^t \frac{1}{\sqrt{2\pi}} \mathcal{F}(\chi_{(-\tau, \tau)} \ast \chi_{(-t, t-\tau)}(x)) d\tau
= \mathcal{F} \left(\frac{\pi}{2\sqrt{2\pi}} \int_0^t \chi_{(-\tau, \tau)} \chi_{(-t, t-\tau)} d\tau \right). \]
The inversion theorem then implies

\[u(x,t) = \frac{\sqrt{\pi}}{2\sqrt{2}} \int_0^t \left(\int_{-\infty}^\infty x_{(-\tau,\tau)}(-y) X_{(-\tau,\tau), t-	au}(y) \right) dy \, d\tau. \]

\[\therefore \quad u(x,t) = \sqrt{\pi} \int_0^t \left(\int_0^t \mathcal{X}_{(-\tau,\tau)}(s) X_{(-t\tau, t\tau), x+t\tau}(s) \right) ds \, d\tau \]
\[= \sqrt{\pi} \int_0^t \left(\int_0^t \text{length of } \{ x(t\tau, t\tau) \cap (x(t\tau, t\tau) + t\tau) \} \right) ds \, d\tau \]
\[= \sqrt{\pi} \left[\int_0^t 2\tau \, d\tau + \int_{t+\tau}^t (t-x) \, d\tau + \int_t^{t+\tau} 2(t-\tau) \, d\tau \right] \mathcal{X}_{(-\tau,\tau)}(x). \]

\[\therefore \quad \boxed{ u(x,t) = \frac{\sqrt{\pi}}{4\sqrt{2}} \left(t^2 - x^2 \right) \mathcal{X}_{(-\tau,\tau)}(x) } \]
if \(-\infty < x < \infty\) and \(0 < t < \infty\).

Since \(f(x,-t) = f(x,t) \) and the pde \(u_{tt} - u_{xx} = f(x,t) \) is invariant under reflection through the x-axis, \((x,t)\mapsto(x,-t)\), it follows that

\[\boxed{ u(x,t) = \frac{\sqrt{\pi}}{4\sqrt{2}} \left(t^2 - x^2 \right) \mathcal{X}_{(-\tau,\tau)}(x) } \]

solves (1) - (2) - (3) in the entire xt-plane.

Note: This is a generalized solution to (1) - (2) - (3) in the xt-plane. In particular,

\[u(x,t) = \frac{\sqrt{\pi}}{4\sqrt{2}} \left(t^2 - x^2 \right) \mathcal{X}_{(-\tau,\tau)}(x) \]

is a continuous function in the xt-plane such that

\[u_{tt}(x,t) - u_{xx}(x,t) = \begin{cases} \frac{\sqrt{\pi}}{4\sqrt{2}} & \text{if } |x| < t^2 \\ 0 & \text{if } |x| > t^2 \end{cases} = f(x,t) \text{ if } |x| < t^2 \]

and \(u(x,0) = 0 = u_t(x,0) \) if \(-\infty < x < \infty\).
\[\hat{u}(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\xi) \sin(\xi(t-r)) \, d\xi. \]

But \(f(x,t) = \sqrt{2\pi} \mathcal{F}_x(x), \) so formula A in the Fourier transform table implies
\[\hat{f}(\xi,t) = \frac{\sin(\frac{\xi t}{2})}{\frac{\xi}{2}}. \]
Substituting in (7) gives
\[\hat{f}(u)(\xi) = \frac{1}{\sqrt{\pi}} \int_{0}^{t} \sin(\frac{\xi r}{2}) \sin(\frac{\xi(t-r)}{2}) \, dr. \]

Using the identity \(\sin A \sin B = \frac{1}{2} \left[\cos(A-B) - \cos(A+B) \right] \) gives
\[
\begin{align*}
\hat{f}(u)(\xi) &= \frac{1}{2\sqrt{\pi}} \int_{0}^{t} \left[\cos(\frac{3\xi t}{2} - \frac{3\xi t}{2}) - \cos(\frac{3\xi t}{2}) \right] \, dr \\
&= \frac{1}{2\sqrt{\pi}} \left[\frac{\sin(\frac{3\xi t}{2})}{\frac{3\xi}{2}} - t \cos(\frac{3\xi t}{2}) \right]_{\tau=0}^{t} \\
&= \frac{1}{2\sqrt{\pi}} \left[\frac{\sin(\frac{3\xi t}{2})}{\frac{3\xi}{2}} - t \cos(\frac{3\xi t}{2}) \right].
\end{align*}
\]

Taking the inverse transform yields
\[
\begin{align*}
u(x,t) &= \lim_{M \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-M}^{M} \hat{f}(u)(\xi) e^{ix\xi} \, d\xi \\
&= \lim_{M \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-M}^{M} \frac{1}{2\sqrt{\pi}} \left[\frac{\sin(\frac{3\xi t}{2})}{\frac{3\xi}{2}} - t \cos(\frac{3\xi t}{2}) \right] \cos(\xi x) \, d\xi \\
&= \lim_{M \to \infty} \frac{2}{\sqrt{2\pi}} \int_{0}^{M} \left(\frac{\sin(\xi t)}{2\xi^3} - \frac{t \cos(\xi t)}{2\xi^2} \right) \cos(\xi x) \, d\xi.
\end{align*}
\]

Using the identities \(\sin A \cos B = \frac{1}{2} \left[\sin(A+B) + \sin(A-B) \right] \) and \(\cos A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A+B) \right] \) yields
\[u(x,t) = \lim_{M \to \infty} \int_{-\infty}^{\infty} \frac{2}{\sqrt{2\pi}} \left[\frac{1}{4\pi^2} \left(\sin(\pi(x+\xi)) + \sin(\pi(t-\xi)) \right) - \frac{\pi}{4\pi^2} \left(\cos(\pi(x+\xi)) + \cos(\pi(t-\xi)) \right) \right] d\xi \\
\]
\[= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin(\pi(t-x)) - \pi(t-x) \cos(\pi(t-x))}{4\pi^3} \, d\xi + \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin(\pi(t+x)) - \pi(t+x) \cos(\pi(t+x))}{4\pi^3} \, d\xi \]
\[+ \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{3 \pi \cos(\pi(t+x)) - 3 \pi \cos(\pi(t-x))}{4\pi^3} \, d\xi \]
\[= \frac{(t-x)^2}{2\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin(\pi(t-x)) - \pi(t-x) \cos(\pi(t-x))}{4\pi^2} \, d\xi + \frac{(t+x)^2}{2\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin(\pi(t+x)) - \pi(t+x) \cos(\pi(t+x))}{4\pi^2} \, d\xi \]
\[= \frac{x}{2\sqrt{2\pi}} \int_{0}^{\infty} \frac{\cos(\pi(t+x)) - \cos(\pi(t-x))}{\pi^2} \, d\xi \]

Using the identities \[\int_{0}^{\infty} \frac{\sin(\lambda) - \lambda \cos(\lambda)}{\lambda^3} \, d\lambda = \frac{\pi}{4} \] (See Gradshteyn & Ryzhik 3.784(7))
and \[\int_{0}^{\infty} \frac{\cos(\lambda x) - \cos(\lambda y)}{\lambda^2} \, d\lambda = \frac{(b-a)\pi}{2} \] (See Gradshteyn & Ryzhik 3.784(3),
leads to
\[u(x,t) = \frac{(t-x)^2}{2\sqrt{2\pi}} \cdot \frac{\pi}{4} + \frac{(t+x)^2}{2\sqrt{2\pi}} \cdot \frac{\pi}{4} \]
\[+ \frac{x}{2\sqrt{2\pi}} \cdot \frac{(t-x)\pi}{2} \]
\[= \frac{\sqrt{\pi}}{8\sqrt{2}} \left[t^2 - 2tx + x^2 + t^2 + 2tx + x^2 - 4x^2 \right] \]
\[= \frac{\sqrt{\pi}}{4\sqrt{2}} (t^2 - x^2). \quad \text{(Valid if } |x| < t \text{ and } t > 0.) \]

Proceeding as in method 1, it follows that
\[u(x,t) = \frac{\sqrt{\pi}}{4\sqrt{2}} (t^2 - x^2) \chi(-111,111)(x) \]
in the xt-plane.
#6. (a) Since \(f \) is an even function, the full Fourier series on \((-\pi, \pi)\):
\[
f(x) \sim a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right]
\]
is actually a cosine series since
\[
b_n = \frac{\langle f, \sin(nx) \rangle}{\langle \sin(x), \sin(x) \rangle} = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(x) \sin(nx) \, dx}{\sin(x)} = 0 \quad (n = 1, 3, 5, \ldots).
\]
We also have
\[
a_0 = \frac{\langle f, 1 \rangle}{\langle 1, 1 \rangle} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{1}{\pi} \int_{0}^{\pi} x \, dx = \frac{3}{3\pi} \int_{0}^{\pi} = \frac{\pi^2}{3}
\]
and if \(n \geq 1 \),
\[
a_n = \frac{\langle f, \cos(nx) \rangle}{\langle \cos(x), \cos(x) \rangle} = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(x) \cos(nx) \, dx}{\cos(x)} = \frac{2}{\pi} \int_{0}^{\pi} \frac{x \cos(nx) \, dx}{\cos(x)} = \frac{2}{\pi} \int_{0}^{\pi} \frac{x \sin(nx) \, dx}{\sin(x)} - \frac{2}{\pi} \int_{0}^{\pi} \frac{x \sin(nx) \, dx}{\sin(x)}
\]
\[
= -\frac{4}{\pi n} \left[\frac{\sin(nx)}{n} \right]_{0}^{\pi} = \frac{4}{\pi n^2} f(\pi) = \frac{4}{\pi n^2} \frac{\pi^2}{3} = \frac{4}{\pi n^2} \frac{\pi^2}{3}.
\]
Therefore the full Fourier series of \(f \) is
\[
\frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n}{\pi n^2} \cos(nx).
\]

(b) It is clear that \(f \) is continuous and \(f' \) is piecewise continuous on the real line. Since \(f \) is \(2\pi \)-periodic, Theorem 4.9\(^a\) from the Fourier series convergence theorems guarantees that the full Fourier series of \(f \) converges to \(f(x^+) + f(x^-) \) for every real \(x \). But \(f(x^+) = f(x) \) and \(f(x^-) = f(x) \) for every real \(x \) since \(f \) is continuous on the real line. Therefore the full Fourier series of \(f \) converges to \(f(x) \) for all real \(x \). In particular,
\[
x^2 = f(x) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n}{\pi n^2} \cos(nx)
\]
for all \(-\pi \leq x \leq \pi\).
\[H. (c) \quad \text{Taking } x = 0 \text{ in the identity from part (b) gives} \]
\[
0 = \frac{\pi}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} \quad \text{so} \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = \frac{-\pi^2}{12} .
\]

\[\text{Taking } x = \pi \text{ in the identity from part (b) leads to} \]
\[
\pi^2 = \frac{\pi}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n \cos(n\pi)}{n^2} \quad \text{so} \quad \sum_{n=1}^{\infty} \frac{1}{n^2} \approx \frac{1}{4} \left(\frac{\pi^2}{3} \right) = \frac{\pi^2}{6} .
\]

\[H. (a) \quad \text{We seek nontrivial solutions of the form } u(x,t) = \Xi(x)T(t) \text{ to (1)-(2)-(3)-(4).} \]

Substituting in (1) yields \[\Xi'(x)T''(t) - \Xi''(x)T(t) + 2\Xi(x)T(t) = 0 \quad \text{so} \quad (\ast) \]
\[
\frac{-\Xi''(x)}{\Xi(x)} = -\left(\frac{T''(t) + 2T'(t)}{T(t)} \right) = \text{constant} = \lambda .
\]

Substituting \(u(x,t) = \Xi(x)T(t) \) in (2) and (3) gives \[\Xi'(x)T(t) = 0 = \Xi'(x)T(t) \] for \(t \geq 0 \)
and in (4) gives \[\Xi(x)T(0) = 0 \] for \(0 \leq x \leq \pi \). Thus nontriviality of \(u \) and \((\ast) \) imply
\[\Xi''(x) + \lambda \Xi(x) = 0, \quad \Xi'(x) = 0 = \Xi'(x), \]
\[T''(t) + 2T'(t) + \lambda T(t) = 0, \quad T(0) = 0 . \]

By Sec. 4.2, the eigenvalues and eigenfunctions of (6) are \(\lambda_n = n^2 \) and \(\Xi_n(x) = \cos(nx) \)
where \(n = 0, 1, 2, \ldots \). Substituting \(\lambda = \lambda_n = n^2 \) in (6) yields
\[T''_n(t) + 2T'_n(t) + n^2T_n(t) = 0, \quad T_n(0) = 0 . \]

We look for solutions to the differential equation in (8) of the form \(T_n(t) = e^{r_n t} \) where \(r_n \) is a constant. Substituting \(T_n(t) = e^{r_n t} \) in (8) leads to
\[
r_n^2 + 2r_n + n^2 = 0 \quad \text{so} \quad r_n = -1 \pm \sqrt{1-n^2} .
\]

If \(n = 0 \) then \(r_0 = 0 \) or \(r_0 = -2 \) so \(T_0(t) = c_1 + c_2 e^{-2t} \) is the general solution of
the DE in (8).

If \(n = 1 \) then \(r_1 = -1 \) with multiplicity two so \(T_1(t) = c_1 e^t + c_2 t e^t \) is the
general solution of the DE in (8).
If \(n \geq 2 \) then \(r_n = -1 \pm i\sqrt{n^2 - 1} \) so \(T_n(t) = e^{-t} (c_1 \cos(\sqrt{n^2 - 1} t) + c_2 \sin(\sqrt{n^2 - 1} t)) \) is the general solution of the DE in (3). Taking into account the initial condition in (3), we have, up to a constant factor,

\[
T_0(t) = 1 - e^{-2t}, \quad T_1(t) = te^{-t}, \quad \text{and} \quad T_n(t) = e^{-t} \sin(\sqrt{n^2 - 1} t) \quad \text{if} \quad n \geq 2.
\]

By the superposition principle, a formal solution to (1)-(2)-(3)-(4) is

\[
u(x,t) = \sum_{n=0}^{\infty} A_n \varphi_n(x) T_n(t) = A_0 (1 - e^{-2t}) + A_1 \cos(t) e^{-t} + \sum_{n=2}^{\infty} A_n \cos(nx) e^{-t} \left[\sqrt{n^2 - 1} \cos(\sqrt{n^2 - 1} t) - \sin(\sqrt{n^2 - 1} t) \right]
\]

where \(A_0, A_1, A_2, \ldots \) are arbitrary constants. Then

\[
u_t(x,t) = 2A_0 e^{-2t} + A_1 \cos(t) (-e^{-t}) + \sum_{n=2}^{\infty} A_n \cos(nx) e^{-t} \left[\sqrt{n^2 - 1} \cos(\sqrt{n^2 - 1} t) - \sin(\sqrt{n^2 - 1} t) \right]
\]

so to satisfy (5) we must have

\[
x^2 = \nu_t(x,0) = 2A_0 + A_1 \cos(x) + \sum_{n=2}^{\infty} A_n \sqrt{n^2 - 1} \cos(nx) \quad \text{if} \quad 0 \leq x \leq \pi.
\]

By problem 6,

\[
2A_0 = \frac{\pi^2}{3}, \quad A_1 = -4, \quad \text{and for} \quad n \geq 2, \quad A_n \sqrt{n^2 - 1} = \frac{(-1)^n}{n^2}.
\]

Thus a solution to (1)-(2)-(3)-(4)-(5) is

\[
u(x,t) = \frac{\pi^2}{6} (1 - e^{-2t}) - 4e^{-t} \cos(x) + 4e^{-t} \sum_{n=2}^{\infty} \frac{(-1)^n \cos(nx) \sin(\sqrt{n^2 - 1} t)}{n^2 \sqrt{n^2 - 1}}
\]

(b) Let \(u = u(x,t) \) satisfy (1)-(2)-(3) and consider \(E(t) = \frac{1}{2} \int_0^\pi \left[u_x^2(x,t) + u_t^2(x,t) \right] dx \), the energy function for \(u \) on the interval \(0 \leq t < \infty \). We have

\[
E(t) = \frac{1}{2} \int_0^\pi \frac{2}{dx} \left[u_x^2(x,t) + u_t^2(x,t) \right] dx
\]

where

\[
= \int_0^\pi \left[u_t(x,t) u_{tt}(x,t) + u_x(x,t) u_{xt}(x,t) \right] dx
\]

\[
= \int_0^\pi u_t(x,t) u_{tt}(x,t) dx + u_x(x,t) u_{xt}(x,t) \bigg|_{x=0}^{x=\pi} - \int_0^\pi u_t(x,t) u_{xx}(x,t) dx
\]

by (2)-(3).
\[E'(t) = \int_0^\pi u_t(x,t)[u_{tt}(x,t) - u_{xx}(x,t)]dx \]
\[= -2\int_0^\pi u_x^2(x,t)dx \quad \text{(by (1))} \]
\[\leq 0. \]

Consequently \(E = E(t) \) is decreasing on \(t \geq 0 \).

(c) Yes, there is only one solution to the problem in part (a). For suppose that \(u = v(x,t) \) is another solution to this problem and consider \(w(x,t) = u(x,t) - v(x,t) \) for \(0 \leq x \leq \pi \) and \(t \geq 0 \). Then \(w \) is continuous and solves

\[(1') \quad w_{tt} - w_{xx} + 2w_t = 0 \quad \text{if} \quad 0 < x < \pi, 0 < t < \infty, \]
\[(2')- (3') \quad w_x(0,t) = 0 = w_x(\pi,t) \quad \text{if} \quad t \geq 0, \]
\[(4') - (5') \quad w(x,0) = 0 = w_t(x,0) \quad \text{if} \quad 0 \leq x \leq \pi. \]

By part (b), the energy function \(E(t) = \frac{1}{2} \int_0^\pi [w_t^2(x,t) + w_x^2(x,t)]dx \) is decreasing on \(0 \leq t < \infty \). But then by (5') and differentiation of (4'),

\[0 \leq E(t) \leq E(0) = \frac{1}{2} \int_0^\pi [w_t^2(x,0) + w_x^2(x,0)]dx = 0. \]

Consequently the vanishing theorem implies \(w_t(x,t) = 0 = w_x(x,t) \) if \(0 \leq x \leq \pi \) and \(0 \leq t < \infty \), and hence \(w(x,t) = \text{constant in the strip} \ 0 \leq x \leq \pi, 0 \leq t < \infty. \)

But (4') implies the constant is zero; i.e. \(u(x,t) - v(x,t) = w(x,t) = 0 \) for all \(0 \leq x \leq \pi \) and \(0 \leq t < \infty. \) Since \(v(x,t) = u(x,t) \) in the strip \(0 \leq x \leq \pi, 0 \leq t < \infty, \) there is only one solution to the problem in (a).
Math 325
Summer 2012
Final Exam

\[n = 16 \]

\[\text{mean} = 107.9 \]

\[\text{median} = 104 \]

\[\text{standard deviation} = 53.0 \]

Distribution of Scores

<table>
<thead>
<tr>
<th>Range</th>
<th>Graduate Grade</th>
<th>Undergraduate Grade</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>174 - 200</td>
<td>A</td>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>146 - 173</td>
<td>B</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>120 - 145</td>
<td>C</td>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>100 - 119</td>
<td>C</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>0 - 99</td>
<td>F</td>
<td>D</td>
<td>8</td>
</tr>
</tbody>
</table>