
Anticipations of Calculus - Archimedes

Let ABC be a segment of a parabola bounded by the straight line AC and the parabola
ABC, and let D be the middle point of AC. Draw the straight line DBE parallel to the
axis of the parabola and join AB, BC. Then shall the segment ABC be 4

3
of the triangle

ABC.

Proposition 1 from the Method of Archimedes.

The greatest mathematician of antiquity was Archimedes of Syracuse,
who lived in the third century B.C. His work on areas of certain curvilinear
plane figures and on the areas and volumes of certain curved surfaces used
methods that came close to modern integration. One of the characteristics
of the ancient Greek mathematicians is that they published their theormes
as finished masterpieces, with no hint of the method by which they were
evolved. While this makes for beautiful mathematics, it precludes much in-
sight into their methods of discovery. An exception to this state of affairs is
Archimedes’ Method, a work addressed to his friend Eratosthenes, which was
known only by references to it until its rediscovery in 1906 in Constantino-
ple by the German mathematical historian J. L. Heiberg. In the Method,
Archimedes describes how he investigated certain theorems and became con-
vinced of their truth, but he was careful to point out that these investigations
did not constitute rigorous proofs of the theorems. In his own (translated)
words: “Now the fact here stated is not actually demonstrated by the ar-
gument used; but that argument has given a sort of indication that the
conclusion is true. Seeing then that the theorem is not demonstrated, but at
the same time suspecting that the conclusion is true, we shall have recourse
to the geometrical demonstartion which I myself discovered and have already
published.” This section will give both Archimedes’ investigations, from the
Method, and the rigorous proof, from his Quadrature of the Parabola, of the
proposition above. The arguments given below are from T. L. Heath’s The
Works of Archimdes, which is a translation “edited in modern notation”.

Proposition 1 from the Method is stated at the beginning of this section,
and the following investigation refers to Figure 1.

From A draw AKF parallel to DE, and let the tangent to the parabola
at C meet DBE in E and AKF in F . Produce CB to meet AF in K,
and again produce CK to H, making KH equal to CK.
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Figure 1:

Consider CH as the bar of a balance, K being its middle point.

Let MO be any straight line parallel to ED, and let it meet CF , CK,
AC in M , N , O and the curve in P .

Now, since CE is a tangent to the parabola and CD the semi-ordinate,

EB = BD;

“for this is proved in the Elements (of Conics).” (by Aristaeus & Euclid)

Since FA, MO, are parallel to ED, it follows that

FK = KA, MN = NO.

Now, by that property of the parabola, “proved in a lemma,”
MO : OP = CA : AO (Cf. Quadrature of the Parabola, Prop. 5)

= CK : KN (Euclid, VI. 2)
= HK : KN.

Take a straight line TG equal to OP , and place it with its centre of
gravity at H, so that TH = HG; then, since N is the centre of gravity
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of the straight line MO, and MO : TG = HK : KN , it follows that
TG at H and MO at N will be in equilibrium about K. (On the
Equilibrium of Planes, I. 6, 7)

Similarly, all other straight lines parallel to DE and meeting the arc
of the parabola, (1) the portion intercepted between FC, AC with its
middle point on KC and (2) a length equal to the intercept between
the curve and AC placed with its centre of gravity at H will be in
equilibrium about K.

Therefore K is the centre of gravity of the whole system consisting (1)
of all the straight lines as MO intercepted between FC, AC and placed
as they actually are in the figure and (2) of all the straight lines placed
at H equal to the straight lines as PO intercepted between the curve
and AC.

And, since the triangle CFA is made up of all the parallel lines like
MO, and the segment CBA is made up of all the straight lines like PO
within the curve, it follows that the triangle, place where it is in the
figure, is in equilibrium about K with the segment CBA placed with
its centre of gravity at H.

Divide KC at W so that CK = 3KW ; then W is the centre of gravity
of the triangle ACF ; “for this is proved in the books on equilibrium”
(Cf. On the Equilibrium of Planes, I. 5). Therefore

∆ACF : (segment ABC) = HK : KW = 3 : 1.

Therefore segment ABC = 1
3
∆ACF .

But ∆ACF = 4∆ABC.
Therefore segment ABC = 4

3
∆ABC.

The statement by Archimedes that this is not a proof is found at this point
in the Method. The mathematically rigorous proof, contained in Propositions
16 and 17 of Quadrature of the Parabola, will now be given. Be on the lookout
for things like Riemann sums.
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Prop. 16. Supposed Qq to be the base of a parabolic segment, q being
not more distant than Q from the vertext of the parabola. Draw through q
the straight line qE parallel to the axis of the parabola to meet the tangent
Q in E. It is required to prove that

A(S) = (area of segment) =
1

3
∆EqQ.

The proof will employ the method of exhaustion, a technique much used
by Archimedes, and will take the form of a double reductio ad absurdum,
where the assumptions that the area of the segment is more than and less
than 1

3
the area of the triangle both lead to contradictions.

I. Suppose the area of the
segment is greater than
1
3
∆EqQ. Then the excess

can, if continually added to
itself, be made to exceed
∆EqQ. And it is possible
to find a submultiple of the
triangle EqQ less than the
said excess of the segment
over 1

3
∆EqQ.

Let the triangle FqQ be
such a submultiple of the
triangle EqQ. Divide Eq
into equal parts each equal
to qF , and let all points
of division including F be
joined to Q meeting the pa-
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rabola in R1, R2, · · · , Rn respectively. Through R1, R2, · · · , Rn draw
diameters of the parabola meeting qQ in O1, O2, · · · , On respectively.
Let O1R1 meet QR2 in F1, let O2R2 meet QR1 in D1 and QR3 in F2,
let O3R3 meet QR2 in D2 and QR4 in F3, and so on.

We have, by hypothesis,

∆FqQ < A(S) − 1

3
∆EqQ,
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or,

A(S) − ∆FqQ >
1

3
∆EqQ. (α)

Now, since all the parts of qE, as qF and the rest, are equal, O1R1 =
R1F1, O2D1 = R2F2, and so on; therefore

∆FqQ = (FO1 +R1O2 +D1O3 + · · · )
= (FO1 + F1D1 + · · · + Fn−1Dn−1 + ∆EnRnQ) (β)

But
A(S) < (FO1 + F1O2 + · · · + Fn−1On + ∆EnOnQ).

Subtracting, we have

A(S) − ∆FqQ < (R1O2 +R2O3 + · · · +Rn−1On + ∆RnOnQ),

whence, a fortiori, by (α),

1

3
∆EqQ < (R1O2 +R2O3 + · · · +Rn−1On + ∆RnOnQ).

But this is impossible, since [Props. 14, 15]

1

3
∆EqQ > (R1O2 +R2O3 + · · · +Rn−1On + ∆RnOnQ).

Therefore

A(S) >
1

3
∆EqQ

cannot be true.

II. If possible, suppose the area of the segment less than 1
3
∆EqQ.

Take a submultiple of the triangle EqQ, as the triangle FqQ, less than
the excess of 1

3
∆EqQ over the area of the segment, and make the same

construction as before.

Since ∆FqQ < 1
3
∆EqQ− A(S), it follows that

∆FqQ+ A(S) <
1

3
∆EqQ < (FO1 + · · · + Fn−1On + ∆EnOnQ)
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[Props. 14, 15]. Subtracting from each side the area of the segment, we
have

∆FqQ < (sum of spaces qFR1, R1F1R2, · · · , EnRnQ)

< (FO1 + F1D1 + ...+ Fn−1Dn−1 + ∆EnRnQ), a fortiori;

which is impossible, because, by (β) above,

∆FqQ = FO1 + F1D1 + · · · + Fn−1Dn−1 + ∆EnRnQ.

Hence the area of the segment cannot be less than 1
3
∆EqQ.

Since the area of the segment is neither less nor greater than 1
3
∆EqQ,

it is equal to it.

Proposition 17. It is now manifest that the area of any segment of a
parabola is four-thirds of the triangle which has the same base as the segment
and equal height.

Let Qq be the base of the
segment, P its vertex. Then
PQq is the inscribed tri-
angle with the same base
as the segment and equal
height.

Since P is the vertex of
the segment, the diameter
through P bisects Qq. Let
V be the point of bisection.
Let V P , and qE drawn par-
allel to it, meet the tangent
at Q in T , E respectively.

Q

E

q
V

P

T

Then, by parallels, qE = 2V T , and PV = PT , [Prop. 2] so that
V T = 2PV .

Hence ∆EqQ = 4∆PQq. But by Prop. 16, the area of the segment is
equal to 1

3
∆EqQ.

Therefore (area of segment) = 4
3
∆PQq.
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In case readers were not sure what Archimedes meant by the terms base,
height, and vertex in the above work, he defines them immediately after
Prop. 17: “In segments bounded by a straight line and any curve, I call the
straight line the base, and the height the greatest perpendicular drawn from
the curve to the base of the segment, and the vertex the point from which
the greatest perpendicular is drawn.” Note that the vertex of the segment,
as defined by Archimedes, is not necessarily equivalent to the vertex of the
parabola.
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