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1.4 Appendix: The Delta Function

Strictly speaking, the delta function is not a function at all, but a distribution. The
difference between a distribution and a function is small but important, particularly for
the physicist who wishes to avoid unpleasant comments from mathematicians who grumble
about “improper functions” and so on. Distributions arise quite naturally in a number
of situations. Most important to us are those circumstances where it is desirable to
talk about the probability for a continuously distributed random variable to take on
a particular value. For example, if a given random variable x is equally likely to be
found having any value in the interval (0, «), then it can be characterized by the uniform
probability distribution

1/a ifz € (0,a)

p(x) = . (1.88)
0 ifzé¢(0,a)

This distribution has the property that the probability that x has some value is equal to
one, i.e.,

/OO p(z)dz =1, (1.89)

while the probability to find z in any other interval is simply the integral of p(z) over that
interval. This idea is readily extended to include any sufficiently well-behaved integrable
function (where well-behaved is here rather loosely defined, since it obviously includes
discontinuous functions). Other common distributions include the Gaussian

plz) = % exp|—a(z — 2')?] (1.90)
and the Lorentzian 1
pl) = 2 (1.91)

ma?+ (v —al)?
both of which we have written in a form which is centered at an arbitrary point x = 2’ and
in which the width of the distribution is controlled by a parameter «. The distribution
“function” p(x) is also referred to as the probability density to find the random variable
taking a value in the neighborhood of z, and we refer to dP = p(z)dx as the probability
to find the random variable in the interval between = and x + dz.

The Dirac delta function §(z — 2) is to be viewed as the limiting case of a
distribution which is entirely concentrated at single point (in the same way that a point
charge is to be viewed as the limiting case of a continuous charge distribution in which all
of the charge is entirely concentrated at a single point). In other words, if it is impossible
that the variable x take on any value other than x’, we define its probability distribution
to be the Dirac distribution

p(z) = 8(x — ') (1.92)
centered at that point. This implies, among other things, that the integral over the Dirac
distribution -

/ 8(x —2')de =1 (1.93)
—00
is equal to unity. On the other hand, the integral of this distribution over any interval
not containing the point x = 2’ must be zero, since the probability of finding the variable
in such an interval vanishes by assumption. Hence we conclude that

1 if 2’ € (w1, 22)

/9”2 O(x —2')dr = . (1.94)
z 0 if 2’ ¢ (zq,22)
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It should be evident that this is equivalent to the relations

/w §(x — ') dx = 0(x — o), (1.95)

— 00

and d
EQ(JE —a2')=6(x—2a) (1.96)
where 6(x — 2’) is the Heaviside step function which increases discontinuously at z = 2’
from zero to one.
In fact, the delta distribution can be considered the limiting case of any sufficiently
narrow distribution (such as the uniform distribution of our original example) in the limit

that its spread goes to zero. Thus, the distribution

la ifre (@ —§,2+%)
palz) = (197
0 v (@ —F,2 +%)

becomes entirely concentrated at the point x = 2z’ in the limit that « — 0. Clearly in
order for the integral of the distribution to remain constant, its height must diverge as
its width shrinks to zero. This turns out to be a characteristic feature of any distribution
which tends to a §—function in some well defined limit. You should convince yourself that
the Lorentzian distribution given above tends to a delta function as o — 0; the Gaussian
does so in the opposite limit o — oo.

Another important property associated with general distributions is the concept
of mean values. If the random variable x is described by the distribution p(z), and if
f(z) is some function whose value depends upon that of the random variable z, then the
mean value associated with the function f(x) is given by the expression

= " p(e) f(a) d. (1.98)

— 00

On the other hand, if the random variable x always takes the value 2/, as it does when z
is characterized by the delta distribution, then the mean value of f(z) must just be the
value of f evaluated at this one value. This then motivates the property that

oo
/ 8(x — ') f(z)dzx = f(2') (1.99)
—00

which holds for any function f(x) which is continuous at = a’. Thus, the delta function
tends to simply “pick out” the value of any function at the point at which it is centered.
This gives us a general rule for evaluating any integral containing a delta function: it is
simply equal to the value of the factors in the integrand multiplying the delta function,
evaluated at the integration point where the argument of the delta function equals zero.
In summary, we list the basic properties of the simple one-dimensional delta function
below.

0 ifx#d
Sz —2') = (1.100)
oo ifzx=4da

s 1 if 2’ € (w1, 22)

/ O(x —2')dr = . (1.101)
z 0 if 2’ ¢ (zq,22)
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s f(@') if 2’ € (z1,x9)
| @t -y do - (1.102)
i 0 ifad ¢ (zq,m:9)

The purist might well claim that the second of these properties is really a special case
of the last. Other properties of the delta function can be proven either from these basic
properties or from the definition of the delta function as the limiting form of a suitable
family of distributions as discussed above. Such properties include the following, which
will be given without proof:

§az) = %5(@«). (1.103)

8f(x)] = Z ma(gg ) (1.104)

In these expressions, @ is a constant, the quantities x; denote the zeroes of the function
f(z), and f’(x) denotes the derivative of f with respect to its argument. Note that these
relations imply that the delta function is symmetric with respect to its argument, i.e.,
6(x — ') =6(2' — ).

Finally, it is possible to provide a relatively well-defined meaning to the derivative
of the delta function. The idea of taking a derivative of a “function” which is everywhere
zero except at one point (where it is presumably infinite) tends to make mathematicians
squirm. In fact, what we mean is that limiting distribution which is the derivative of any
distribution whose limit is itself a delta function. The “function” which we shall denote
by

§ (@ — ) = Lo — ) (1.105)
dx
is even stranger than the delta function, insofar as it appears to be zero everywhere except
the point © = 2/, its integral is zero, but it has the property that (note carefully where
the primes go in this expression

s fl(z) ifxe(x,22)
/ §(x— ) f(2)d' = (1.106)
z 0 if x ¢ (21, 29)

so the derivative of §(x —a) returns the value of the derivative of the function at the point
where it is centered. This relation can formally be obtained through an integration by
parts, i.e., consider
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/;2 8 (x— 2 f(2)) da’
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where we have used the fact that the integrand on the left evaluates to f'(x), dropped
the first term since the delta function vanishes at the endpoints of the integration, and
used the fact that d/dx’ [§(z — 2')] = —&'(x — 2’), with the minus sign coming from an
application of the chain rule. Equally odd higher order derivatives of the delta function
can also be defined, but we shall not have much use of them, and so leave them to the
interested student to pursue.
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Extension to Higher Dimensions

The extension of the delta function to higher dimensions is straightforward. Consider two
random variables x and y, governed by the joint probability distribution function p(z,y),
which is defined so that dP = p(z,y)dzdy gives the probability that the first variable
takes a value between x and x 4 dx, while the second takes a value in the interval y to
y + dy. This implies the normalization

//dwdy p(w,y) =1, (1.107)

where the integration is over the entire zy plane. It is convenient to view this as defining
the probability density governing a randomly distributed vector ¥ = x7 + yj. Thus, we
write p(7) = p(z,y), so that

/erp(F) =1. (1.108)

The two-dimensional delta function is the limiting form of such a distribution when there
is only one possibility for the random vector 7. That is, if ¥ = 7y with unit probability,
then by definition p(7) = 6§(F—79). It is not hard to see that 6(F—79) = 6(z—20)6(y — o),
where xg and yg are the components of the vector 7.

More generally, if 7’ is a vector in d-dimensions we can define the d-dimensional
delta function §(7 — 7’) having the following properties:

0 if 77
§(F— ') = (1.109)

o i 7=
/dV&(F—F’) —1 (1.110)

/dV FR8(F—7") = £(7"). (1.111)

where dV' denotes the infinitesimal volume element in d-dimensions, and it is assumed
that the integrations are over any region containing 7/ (the integral over any region not
containing 7y vanishing). The d-dimensional delta function can be written as the d-fold
product

S(r—7") = 6(xq — x))8(xe — ) -+ - §(xqg — ) (1.112)

of delta functions associated with each of the cartesian components.

In higher dimensions the gradient of the delta function takes the part of the one-
dimensional derivative of the simple delta function. Thus we can define the distribution
) (¥ — ") which in three dimensions, for example, has the property that

/d3r’ Vo(F— ) £(7) = V(). (1.113)

In a similar fashion it is possible to give meaning to the Laplacian of the delta function
V26(7 — ), which has the property that

/d3r’ V2§(F — 7) f(F) = V2 £ (7) (1.114)

Note that this allows us to express a differential operator as an integral operator.



