Chapter 2
THE FORMALISM OF QUANTUM MECHANICS

The purpose of this section is twofold: (1) to enumerate the basic postulates of quantum
mechanics in a form which is manifestly representation independent, and which is poten-
tially applicable to general quantum mechanical systems of one or more particles; and
(2) to provide the mathematical framework necessary to understand the contents of these
postulates. To this end it is useful to adopt an approach which mixes these two tasks.
Thus, we start out by simply stating the first postulate, followed by a general discussion
of its mathematical implications. This procedure will be repeated for the remaining pos-
tulates. Following the general structure introduced earlier, we begin the postulates by
describing the means by which an arbitrary dynamical state of a quantum mechanical
system is specified.

2.1 Postulate I: Specification of the Dynamical State

The dynamical state of a quantum mechanical system is at each instant of
time associated with a state vector |i). Possible state vectors are elements
of a complex linear vector space 5, referred to as the state space or Hilbert
space of the system.

Obviously, a prerequisite to our understanding of this postulate and its implications is a
knowledge of linear vector spaces.

2.1.1 Properties of Linear Vector Spaces

A set S of objects {|¢), ), &), ...} forms a linear vector space (LVS) if it is closed under
two mutually distributive operations: (1) an associative and commutative law of vec-
tor addition, and (2) multiplication by elements of an associated field F' of scalars
{\, p,v,...}. This operation of vector addition is assumed to satisfy the properties enu-
merated below.

1. For all vectors |¢) and |£) in S there exists a vector |x) in S such that |x) = [¢)+E).
(Closure)

) +1€) =) +[¥). (Commutivity)
1)+ (1€) + X)) = (1) +1€)) + [x)- (Associativity)
There exists a unique null vector 0 in S such that 0+ |£) = [£).

For each [£) in S there exists an element —|¢), such that |§) +(—|£)) = |£) —|&) = 0.
(Additive inverse)

AT e

The field with respect to which the space is defined is an associated set F' of numbers
(usually the set R of real numbers or the set C' of complex numbers) which we may use
to multiply the elements of the space itself. This operation involving multiplication of
elements of S by elements of F' is assumed to have the following properties:
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1. For all vectors |¢) in S and scalars A in F there exists a vector |x) in S such that

IX) = A¢). (Closure).
2. N|¥)+1€)] = MNE) + N y) (Distribution of scalar multiplication over vector addition)

3. AM|Y) + Aa|v) = (A1 + X2)|v) (Distribution of scalar addition over multiplication of
vectors by scalars.)

4. M (A2])) = (M A2) ) (Associativity of scalar multiplication.)

5. There exists an identity element 1 in F such that 1|¢) = [€) for each [£) in S.

Some of these properties are actually associated with definitions of the term field. The
reader is no doubt familiar with many examples of linear vector spaces, a common example
being the set of displacement vectors 7 in R3, which is a linear vector space with respect to
the field R of real numbers (i.e., it is a real vector space). Obviously, the notation that
we are using (which is due to Dirac) to distinguish vectors |¢) from scalars A (elements
of the field) has a direct parallel in the common use of arrows, boldface symbols, etc.
commonly used to distinguish vectors in R from their scalar counterparts. Indeed, once
one grows accustomed to this notation, it is not hard to imagine an introductory physics
course making use of the Dirac notion to express the ubiquitous second law of Newton
in the form |F) = m|a). Other examples of vector spaces more relevant to quantum
mechanics are listed below. In all cases of quantum mechanical interest the relevant field
is the set C of complex numbers, i.e., we are interested in complex vector spaces. The
interested reader is encouraged to verify the properties listed above with regard to each
of these spaces:

1. The set CV of column vectors of length N having complex elements. The field
is that of the complex numbers and vector addition is defined through the addition of
components as it is in R3. It is isomorphic to the set of complex row vectors having the
same number of elements.

by c1 b1+
bo 2 by + c2
+ : = ) (2.1)
bn cN by +cn
c1 Acq
C9 )\CQ
Y e S (2.2)
CN )\CN

2. The set L?(R™) of complex-valued square-integrable functions ¥(7) on R".
Thus, the function ¢(z) is in L?(R) if the integral

/ " yrgdn =M, (2.3)

exists and is non-infinite. Again the field is that of the complex numbers and vector
addition is associated with the pointwise addition of functions, i.e., for any two functions
11 (x) and ¥, () in this set we can produce the function

U(x) = 1 (2) + () (2.4)
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which is also an element of the set. Note that all we are doing here is “adding by com-
ponents”, as in the example above, except that in this circumstance the components are
labeled by a continuous index z, instead of a discrete one.

3. Tt is often useful to work in a larger space than that defined in example 2,
namely a space which includes the plane waves and delta functions. We will loosely define
this space to be the Hilbert space F(R™) of Fourier-transformable functions on R™. This
space includes, as a subset, the square-integrable functions of L2(R"™). It also includes the
planes waves (whose Fourier transforms are the delta functions) and the delta functions
(whose Fourier transforms are the plane waves), neither of which are themselves square-
integrable. Since L?(R") is a subset of F(R") and is, by itself, a linear vector space under
the same operations of vector addition and scalar multiplication as F(R™), it is referred
to as a subspace of the larger vector space.

2.1.2 Additional Definitions

Span - A set of vectors {|¢;)} is said to span a vector space S if every vector |¢) in S
can be written as a linear combination

) =D ciled) (25)

of the elements of the set. In this expression the ¢; are complex constants (i.e., elements
of the field.). The vectors {2,7,2i+ 7, k} span the set of vectors in R3. There are obviously
more than we need, however. This leads us to the next definition.

Linear Independence - A set of vectors {|¢;)} is linearly independent if no element in
the set can be written as a linear combination of the other elements in the set. Otherwise
the members of the set are linearly dependent.

Comment: This definition turns out to be equivalent to the statement that if the set
{|¢;)} is linearly independent, then the only solution to the equation

> cilgy) =0 (2:6)

T

is ¢; = 0 for all 1.

Proof: Assume that the set {|¢,;)} are linearly independent, and assume that
there existed a solution to the equation above with at least one coefficient ¢; not equal to
zero. Then we could solve for the associated vector |¢;) as a function of the others, i.e.,
it would follow that

cild;) + > el =0 (2.7)
poy
and so
0= =3 (£ ) ko = S e (2.9
i#j N i#j

which violates the assumption of linear independence. Hence we conclude that there can
be no such nonzero coefficient.

Dimension - If a linear vector space S contains a subset of N linearly independent
vectors, but not a subset of N + 1 linearly independent vectors it has dimension N, or is
an NN-dimensional space, If there exist subsets of S with N linearly independent vectors
for all N it is said to be infinite dimensional.

Basis - A linearly independent set of vectors {|¢,)} which spans a space forms a basis for
the space.



32 The Formalism of Quantum Mechanics

A basis, in a certain sense, forms the minimal set of vectors that is necessary to
form all other vectors in the space by linear combination. A basis set is often referred to as
being complete with respect to the vector space that it spans. Note that by definition,
any spanning set of vectors contains a basis as a subset. (We just have to weed out
the unnecessary vectors which can themselves be written as linear combinations of the
remaining ones.) Perhaps the most useful distinction between a basis set and a spanning
set, is that the expansion coeflicients expressing any element of the space in terms of the
members of a basis are unique. That is, if the set of vectors {|¢;)} forms a basis for S,
and |¢) is an arbitrary element of S it can be written as a linear combination

¥ =3 bils) 29)

of the elements of the basis in one and only one way. This is easy to prove. Assume that
there existed another expansion for this vector of the form

) = cildy). (2.10)

K3

The difference of these two expansions gives the null vector, which we can write as

0="> (b —ci)ley) (2.11)

K3

Due to the assumed linear independence of the vectors {|t;)} this can only be satisfied if
the coefficients (b; — ¢;) vanish. This implies that ¢; = b; for all ¢ and hence the expansion
is unique.

2.1.8 Continuous Bases and Continuous Sets

It often arises that a set of vectors {|¢,)} is labeled by a continuous index . Examples

include the plane waves
ikx

Pr(x) = f/%; keR (2.12)
or
ik .
pp(7) = )i keR’ (2.13)

We therefore extend our previous definitions developed for discrete sets of vectors as
follows:

Span - A continuously indexed set of vectors {|¢p,)} is said to span a vector space S if
every vector |¢) in S can be written as a continuous linear combination

|w:/qu%> (2.14)

of the elements of the set. In this expression the function ((«) gives the complex value of
the expansion coefficient of |¢) associated with the state |¢,) of the spanning set.

Linear Independence - A continuously indexed set of vectors {|¢,)} is linearly inde-
pendent if the only solution to the equation

/da Cla)],) = 0 (2.15)

is that the function C'(a) =0 for all a.

Basis - A linearly independent set of continuously indexed vectors {|¢,)} that spans a
linear vector space is said to form a basis for the space. In this case, the space is necessarily
infinite dimensional, since it clearly contains an infinite number of vectors in any region
where the index « takes on values.
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2.1.4 Inner Products

Another important property associated with the linear vector spaces of quantum mechan-
ics is that they are inner product spaces. A linear vector space S is an inner product
space if there exists an assignment to each pair of vectors |¢) and |¢) in S, a complex
number (i.e., element of the field), referred to as the inner product of |¢) and |¢)) and
denoted by the symbol (¢[1)), obeying the following properties:

1. (¢|¢) is real and non-negative, i.e., (¢|¢) > 0. Moreover, ($|¢p) = 0, if and only if
|¢) is the null vector.

2. (d||Y1) + 9)] = (BlY1) + (P|thy). Thus, the inner product distributes itself over
vector addition.

3. (DlAP)] = Molv)

4. (pl) = ((p|#))*. Thus the order of the inner product is important for complex
vector spaces.

Comment: In complex vector spaces, the inner product (¢[)) is linear in [¢), but an-
tilinear or symplectic in |p). The first half of this comment stems from the observation
that

(BlA1[Y1) 4 Aolt2)] = A (@) + Ao (Pla) (2.16)

which follows from (2) and (3), while the second stems from the fact that if [¢) = A;|¢y) +
Az2|¢5) then the inner product of |¢) with |¢)) can be written

(BlY) = AT(D1]¥) + A5 {Palv). (2.17)

This follows straightforwardly from (2), (3), and (4). The proof is left as an exercise.
It is convenient, and not entirely wrong, to think of each vector |¢)) as a column vector
containing elements ,;, and to think of (¢| as a row vector whose elements are the complex
conjugates ¢; of the those associated with the column vector representing |¢). As we will
see, such a representation for the kets and bras is usually possible (but not essential). In
this way the inner product can be viewed as the “dot product”

V1

(4
(o1 &5 - on) | =2 (2.18)

VN

This is, of course, the inner product commonly associated with CV. The complex conju-
gated row vectors associated with the symbols {{(¢|} thus form a vector space S* of their
own which is isomorphic (or dual or adjoint) to the original space S having elements
{l¢)}. The vectors of S* are in 1-1 correspondence with the vectors of S. In the Dirac
notation, an element |@) of S is referred to as a ket, while an elements (¢| of S* is referred
to as a bra. The combination {p|¢)) forms a “bracket”, which in the Dirac formalism is
always a number.
Examples:

1. In the space of displacement vectors ©* in R> the inner product is just the familiar
“dot product”.

2. As discussed above the inner product in CV is obtained by “dotting” a complex
conjugated row vector into an unconjugated column vector.
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3. In functional spaces, the inner product usually involves the continuous analog of
a summation over components, namely an integral. Thus, in the space of Fourier
transformable function on R? we “associate” with each function ¥(7) a vector [1).
The inner product of two functions then takes the form

i) = [ v o) (219)
where the integral is over all space.

The concept of an inner product allows us to make several new definitions:

Norm - The positive-definite real quantity ||¢|| = \/(|¢) is referred to as the norm, or
the length of the vector |¢). A vector |¢)) is said to be square-normalized, have unit norm,
or be a unit vector if ||tp|| = 1. Any vector having finite norm can be normalized. That
is, if ||¢|| is not infinite, then the vector

_
) = T o) (2.20)

is a unit vector along the same direction in the space as |¢))

Orthogonality - Two vectors |¢) and |¢) are orthogonal if

(¥l¢) = (¢l) =0, (2.21)

i.e., if their inner product vanishes. We loosely say that the vectors have no overlap, or
that [¢) has no component along |$) and vice versa.
Orthonormal Set

1. A discrete set of vectors {|p;)} forms an orthonormal set if

(il ;) = bij (2.22)

that is, if they are a set of unit-normalized vectors which are mutually orthogonal.

2. A continuously-indezxed set of vectors {|¢,)} forms an orthonormal set if they
obey the Dirac normalization condition

(BalPar) =8 — o). (2.23)

Note that the members of such a set have infinite norm, and are not square-normalizable.

Orthonormal Basis - An orthonormal set of linearly independent vectors which spans
a space is referred to as an orthonormal basis (which we will abbreviate as ONB).

It is straightforward to show that any set of mutually orthogonal vectors not
containing the null vector is linearly independent. Thus, any orthonormal set of vectors
which span a space also forms an orthonormal basis for the space. It is also possible to
show that the number of basis vectors in any orthonormal basis is equal to the dimension
of the vector space. To do this we first show that from any set of N linearly independent
vectors it is possible to construct a set of N mutually orthogonal vectors, and thus,
generally speaking, an orthonormal set of such vectors. The following explicit algorithm
for doing this is referred to as the Gram-Schmidt orthogonalization procedure.

Let {|x1),|Xx2)s - |xn)} be a set of linearly independent vectors of finite length.

)
9]

Set

[¥1) = Ixa) P1) (2.24)
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to produce a unit normalized vector |¢;) pointing along the same direction as |x;). Now
construct the second vector to be orthogonal, by subtracting off that part of it which lies
along the direction of the first vector: set

1%9)

[1a) = Ixa) — |P1){P1]x2), [P2) = Hd’z”

(2.25)

Note, that by construction
(D11¥2) = (D1]x2) — (D1]d1)(D1]x2) = O, (2.26)

so that |1,) and |¢,) are orthogonal to |¢;). We now proceed in this fashion, constructing
each vector orthogonal to those previously constructed. Thus, we set

2
(U
Vo) =Ixe) ~ 80l Ibg) = 1 (227)
P [l3]]
and, more generally, the nth such vector takes the form
60 = ) — Z )i, I8 = Lok (2.28)

1A

The only way this process could stop is if one of the resulting vectors |¢,,) turned out to
be the null vector. A close inspection of the process reveals that this can’t happen if the
original set is linearly independent, as we have assumed. Thus, in this way we construct
an orthonormal set of vectors {|¢,,) } equal in number to the original. It follows, that given
any basis for the space we can construct an orthonormal basis with an equal number of
vectors. Thus, for a finite dimensional space there exists at least one ONB with the same
number of members as the dimension of the space. It turns out that there can’t exist
any bases with any fewer members, because then we could ultimately end up solving for
one of the members of the larger set in terms of the remaining members, which would
contradict their linear independence. The proof is left as an exercise. For now, we will
simply observe that orthonormal bases are extremely useful due to the ease with which
they allow arbitrary vectors to be expressed. We explore this below.

2.1.5 Ezpansion of a Vector on an Orthonormal Basis

Discrete Bases - Let the set {|¢;)} form an orthonormal basis (or ONB) for the space
S, so that (¢;|#;) = dij,and let [x) be an arbitrary element of the space. By assumption
there exists an expansion of the form

= ZXi |¢%> (2-29)

for a unique set of expansion coefficients x;. How do we determine what these expansion
coefficients are? Consider the inner product

(5lx) = le P51%:) ZXi bij = X (2.30)

of the vector |x) with an arbitrary element |#,) of this basis. This shows that the expansion
coefficient x; is just the inner product of the vector of interest with the unit vector along
that direction in Hilbert space. Thus x; = (¢;|x). Since the order in which we write the
product of a number and a vector is unimportant, we will often write this in the form

)=l xi = Z|¢ (:lx) (2:31)

[
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for reasons which will become clearer later on.

Extension to Continuous Bases - Let the set {|¢,)} form a continuous orthonormal
basis for the space 9, so that

(Palta) = 6(a—a), (2.32)

and let |x) be an arbitrary element of the space. By assumption there exists an expansion

) = [ da x@ls) (2.33)

for some unique expansion function x(«). How do we determine what this expansion
function is? Consider the inner product

(0ul) = (0l | [ do @)l = [ do x(@)pultn) = [ doxorato =) =x(e)

(2.34)
of the vector |x) with an arbitrary element |¢,,) of the basis. This shows that, as in the
discrete case, the expansion coefficient y(a’) is just the inner product of the vector of
interest with the basis vector along that direction in Hilbert space. Thus x(a) = (¢,|x)-
We will refer to the function x(«) as the “wave function” representing |x) in the a-basis
or « representation. Again, since the order in which we write the product of a number
and a vector is unimportant, we will write this often in the form

\maﬂmmn@:/MMM%m. (2.35)

Comment: It is clear that when we talk about ONB’s, such as {|¢;)} or {|¢,)}, the
important information appearing inside the ket which distinguishes the different basis
vectors from one another is the label or index: ¢ or j in the discrete case, a or o in the
continuous case. The symbols ¢ just sort of come along for the ride. From this point on
we will acknowledge this by using the abbreviated notations

i) = |o) (2.36)

and
la) = [¢q)- (2.37)

In this way the expansion of an arbitrary ket can be written
) =D xaliy =D 1) (ilx) (2.38)

and

m:/mmwm:/mwmm. (2.39)

2.1.6 Calculation of Inner Products Using an Orthonormal Basis

Discrete Bases - Let the set {|i)} form an orthonormal basis (or ONB) for the space
S, so that (i|j) = 6;;,and let |x), [¢) be arbitrary elements of the space. By assumption
there exists expansions of the form

)= D xeli) = Sl (240
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) = D _wili) = 3 li)ily). (241)

The inner product of these two vectors can be written

<wm—w%2}mﬁ—§)www (242
But (¢|i) = ((¢]1))* = 9. Thus, we can write the inner product in the form

(Wlx) = Ziﬁ?xi- (2.43)

But this is the form obtained by taking the “dot product” of a complex-conjugated row
vector and a column vector. This justifies our earlier loose association of kets and bras
with column and row vectors, and, in fact, makes clear the conditions under which such
a picture is justified, i.e.,

Any discrete ONB for a space S induces (or generates or defines) a row-
vector/column vector representation for the space, i.e., it gives us a
natural way of associating each abstract ket |¢) in S with a complex-valued
column vector having components v,, and each bra (| in S* with a complex-
valued row vector having components ;.

Extension to Continuous Bases - Let the set {|a)} form a continuous orthonormal
basis for the space S, so that
(ala) = §(a — '), (2.44)

and let |x),|1) be arbitrary elements of the space. By assumption there exist expansions
of the form

m:/mmwwz/mmmm (2.45)
m:/mwww:/mmmm. (2.46)

The inner product of these two vectors can be written

who = (01 [ do xt@la) } = [ do el (247
But (¢|a) = ((a|t))* = 9™ (). Thus, we can write the inner product in the form

wm:/mmwmw:/mwmmm. (2.48)

This is also interesting, because it looks just like the inner product which appears in
“functional” linear vector spaces, such as the set of Fourier transformable functions on
R3. This suggests the following important point:

Any continuous ONB for a space S induces a wave function representa-
tion for the space, i.e., it gives us a natural mapping of each abstract vector
[) in S onto a complex valued wave function (), which give the expan-
sion coefficients for the state in that continuously-indexed basis. Similarly, it
maps each vector (¢ in S* onto a complex-valued wave function ¢*(«). We
speak, therefore, of 1(a) as the wave function for the state |1) in the {|a)}
representation.
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This similarity to what we see with the functional spaces works in the opposite direction
as well. That is, the form of the inner product associated with functions on R>

(W) = / B (7)) (2.49)

suggests that the wave function () can be viewed as “merely” the function giving the
expansion coefficients in some orthonormal basis of states {|)} labeled by the (continu-
ously distributed) position vectors #in R3. This leads to something called the position
representation.

2.1.7 The Position Representation

In the state space of a single quantum mechanical particle moving in three dimensions we
wish to make an association

Y(r) «— |¥) (2.50)

of each function () with an underlying abstract vector in the space |¢)). We define this
association more precisely by considering a particular set of functions, namely, the Dirac
delta functions {6(# — #’)}. For each point 7/ in space, there is a delta function centered
at that point, which quantum mechanically would correspond to a particle which has all
of its probability density located at 7/. Thus, we have an entire set of functions labeled
by the points in R3. With each of these position-localized wave functions we associate a
state |7} of the state space. Thus we have the association

) s 0 (7) = (7 = ) (251)

where we have introduced a notation which suggests that, in this context, the delta func-
tion is to be considered a function of 7, which happens to be labeled by the point 7. We
claim that this set of kets {|#/)} forms a continuous orthonormal basis for the underlying
space. This is intuitively reasonable insofar as a particle located at 7 is incompatible with
it being located at any other point. For the moment we will simply assume that this is
true and see where it leads us. The assumed orthonormality of the states {|77')} leads us
to the orthonormality relation, as defined for continuously indexed states,

(FF) = 6(7F — 7). (2.52)

In addition, the assumed completeness of the set implies that any other state in the space
|t)) must be expandable in this basis. Thus we can write

) = / B ()| (2.53)

where we can write ¢(7') = (7’|¢), in analogy to what we did with the continuous basis
|a). Since the integration variable is just a dummy, we can drop the prime and write this

) = / & (). (2.54)

It is now natural to assume that the function () = (¥]1), which here just gives the
expansion coefficients for [¢) in the |7) basis, is precisely the wave function ¢(7) that we
wanted to associate with the state |1) to begin with. This turns out to be a consistent
interpretation. In, particular, it predicts that the “wave function” associated with one of
the basis states |7’) should be given by the expression

P (7) = (F17) = 8(7 — 1) (2.55)
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which is consistent with our original association of the state 7/ having all of its probability
density located at 7/. Thus, the orthonormality relation for the states {|#’)} also gives
the form that their wave functions take in this representation, which we refer to as the
position representation, or the 7 representation.

2.1.8 The Wavevector Representation

Recall, that the set of plane waves
(2.56)

for all wavevectors k forms a complete set of functions for the space of transformable
functions. We use this to define a set of underlying kets {|k)} which are the states
represented by the plane waves in the position representation just introduced. Thus, by
definition,

= [@r ool = [ ey (257

These states are the Fourier transforms, in this sense, of the position localized states |7). If
the states {|7*)} are complete and orthonormal, then it is straightforward to show that the

states < |k) | are as well. Orthonormality of the kets |k) follows from the orthonormality

the plane waves, i.e.,

FIRY = /d3r S b (7) = / CFF)7 _ 55— ). (2.58)
These states are also complete, since they can be used to expand an arbitrary member of

the {|7*) basis, and thereby be used to expand an arbitrary state |¢) of the system. To
determine this expansion we note that if, by assumption,

7 = / @k (PR (2.59)

then it must be that

—ik-7
- - * e
pr(k) = (B|F) = ((FIk))* = ¢3(r) = @ (2.60)
Thus, we have the proposed expansion,
d*k o—iR7| I
7= [ Gy IR (261)

which is the counterpart to the definition

- 3r o
B = [ Gy <5 (2.62)

which is verified to be correct, by expressing the states \E) in terms of the states |’), and

collapsing the delta functions which develop. Having established the fact that the states
{|k)} also form an ONB for this space we can now expand arbitrary states

) = / ik D(F) ). (2.63)
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in this basis. This leads to interesting relations. For example, in the real space represen-
tation we have that

L 3 R
v = (1) = [ @k o @R = [ G w@e (2:64)

which shows that ¢(7) is the Fourier transform of ¢(E) Similarly, we find that

d3r 7z

vl = E) = [ v = [ G vy e . (2.65)

so that ¢(7) and 1/1(1_5) are Fourier transform pairs. Note where the plus and minus signs go
in the exponentials in (2.64) and (2.65), particularly in comparison to (2.61) and (2.62).
Also note a subtle shift in notation. In the last chapter we denoted the wavefunction by
¥ (7) and its Fourier transform by {b(lZ) We now know, however, that there are as many
possible wavefunctions representing the state |1) as there are continuous orthonormal
bases for the space. In fact, we will see that if there exists one such continuous basis
there will always be an infinite number of other ones that can be constructed. Thus,
rather than coming up with a different diacritical mark ), {b, zL, etc. to differentiate the
wavefunction in each new representation that we introduce, we will agree to always include
the argument of the wavefunction to indicate which representation we are working in at
the moment. Thus, it will be understood that @b(F’),@b(lZ),and, e.g., Y(a) all represent
different functions of their arguments, even though we use the same symbol ¢ for each,
to indicate that they all provide a means of representing the same underlying state vector
|1)). We note in passing that we could avoid this problem all together by simply agreeing
to use our identification of the expansion coefficient, or wave function, with the associated
inner product. Thus, instead of writing (7), ¢(E),and, ¥(a), we could always just write
(FlY), (E|1/1>, and (o). In keeping with modern usage, we will use both interchangeably.

All of these ideas can be applied to a particle moving in lower dimensions, as well.
In the space of a particle moving in one dimension we introduce a set of position localized
states {|z)} labeled by the positions where the particle can be localized. We then have
the following relations similar to those developed above

(z|2") = §(x — ')

|w:/mwwm
(x) = (2])

and a set of plane wave states {|k)} labeled by wave vector, which obey the following
relations
(k|K'y = 6(k — k)
) = [ di vl
P(k) = (klY)

and which are related to the position localized states through the following relations

= [ o la)eli) = [ G e

)= [k ki) = [ 5
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eik:z: .
(z|k) = W = (k|z)
vla) = (ali) = [ dk o) eli) = [ ﬁ () e

P(k) = (kly) = /dx ¥(z)(klz) = /(%‘fﬁ W(x) ek,

2.2 Postulate II: Observables of Quantum Mechanical Systems

In keeping with the general scheme introduced earlier, the second of the postulates that
we will explore describes the nature of the observables of quantum mechanical systems.

Every observable A of a quantum mechanical system is associated with a linear
Hermitian operator A whose eigenstates form a complete orthonormal basis
for the quantum mechanical state space.

We are led, therefore, to investigate the nature of linear operators defined on
linear vector spaces.

2.2.1 Operators and Their Properties

An operator A associated with a linear vector space S acts on the elements |y) in S
and maps them onto (possibly) other elements |x 4) of the same space. We express this
mapping of one vector onto another in the form

Alx) = Ixa)- (2.66)

An operator A is linear if it satisfies the following linearity condition

AX) + ) = Alxa) + plva) = AAlx) + pAly), (2.67)

for arbitrary states |x),|¢), and arbitrary scalars A and p. In what follows we assume,
unless otherwise stated, that all operators under consideration are linear. One of the
useful properties of linear operators is that their action on arbitrary states is determined
once their action on the elements of any ONB is specified. To see this, let {|i)} be an
arbitrary ONB, and let the action

|¢3) = Alé) (2.68)

of the linear operator A on these states be known. When an arbitrary state |¢) is acted
upon by A we can use the expansion of |¢) in this basis to see that

Alp) = AZ%M = Zwi Ali) = mem (2.69)

which uniquely determines the resulting vector. We describe below some of the common
properties associated with linear operators.

The sum and difference of operators are defined through vector addition

(A+ B)|[Y) = Ajp) + Bl) = [$4) + |[¥5) (2.70)



42 The Formalism of Quantum Mechanics

(A—=B)[¢) = Al¢) = Bl)) = |vh4) — [¢)- (2.71)
The product of operators is defined through the combined action of each. If C = AB,
then
Cl) = ABJY) = Alyp). (2.72)
In general the operator product is not commutative, since reversing the order can give a
different result, i.e., the vector

BAJp) = Bl 4) (2.73)

need not have any relation to the vector A|yg). It is useful, therefore, to define the
commutator of two operators

[A,B] = AB— BA= — B, A] (2.74)

which is also an operator. If [4, B] = 0, then AB = BA, and the two operators commute.
From the definition of the commutator it is straightforward to prove the following useful
relations

[A,A] =0
[A,B+C) = [A,B]+[A,C]
[A+B,C] = [A,C] +[B,C]
[A, BC] = B[A,C] + |A, BIC
[AB,C] = A[B,C] + |A,C|B

C
C]
[A[B, C]] + [C[A, B]] + [B[C, Al =

The null operator, maps each vector in the space onto the null vector, i.e., 0]3)) = 0.
The identity operator, maps each vector in the space onto itself, i.e., 1]1)) = [¢).

The inverse of an operator A, if it exists, is denoted A~! and obeys the property

AAT =A"1A=1. (2.75)

A nonzero vector |x) is said to be an eigenvector of an operator A with eigenvalue a
(where generally, a € C) if it satisfies the eigenvalue equation

Alx) = alx). (2.76)

The set of eigenvalues {a} for which solutions to this equation exist is referred to as the
spectrum of A, and denoted spectrum(A).

It is also possible to define operators that are, themselves, functions of other operators.
This can be done in a number of ways. For example, from the product rule given above, it
is clear that in general the n-fold product of an operator A with itself is well-defined. Thus,
we may always speak of positive integer powers A™ of an operator. If the inverse A~! of an
operator is also defined, then we can define negative powers through the relation A= =
(A*I)n. Then, if f(z) =3, fat, is any power series expandable function with a suitable
radius of convergence, we can define the operator valued function F(A) = >, fnA, of
the operator A. We will ignore for the moment a discussion of the conditions under which
such series converge, because, as we will see, there are other ways of defining operator
valued functions that are often more useful that allow this question to be avoided.
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We now consider a variety of different operators. We begin by noting that if we multiply
any state [1)) in the space by a scalar A we generate a new vector [1,) = A|tp). Thus,
we can define a very simple type of operator which carries out this operation. To avoid
any cumbersome notation we simply will denote by A that operator which multiplies
a vector by the scalar A\. This allows us, e.g., to form operators of the form A + A,
where A is an arbitrary operator and A\ a scalar, whose action is the obvious one, i.e.,
(A4 A) [¥) = ANY) + Alp). As special cases of operators formed from scalars, we have
A = 1 corresponding to the identity operator and A = 0 corresponding to the null operator.
Multiplication by a scalar is an operation that always commutes with any other linear
operator, i.e., scalars always commute with everything. Thus, we can write [\, A] = 0.

2.2.2  Multiplicative Operators

In the space of a quantum particle moving in one dimension let us introduce an operator
X by defining its action on the one-dimensional position states {|z)} as follows:

X|z) = z|z). (2.77)

Thus, X just multiplies the basis vector |x) by its label, i.e., by the point where the
associated delta function is centered. (Note that this implies that the basis states |x) are
all eigenstates of the operator X, and are in fact labeled by their associated eigenvalues).
With this definition, we find that the action of X on an arbitrary state |¢) is rather simply
expressed in the position representation, i.e.,

X|) :X/d:m/)(:r)|x> = /d:l?’l/)(:l?)X‘:D> = /dx@b(x)x\x) (2.78)

Rearranging a little, we see that

4¥W0:1/dxhd%xﬂw) (2.79)

This shows that the wave function representing X 1) is just z¢(x). When we don’t mind
being a little imprecise we will say that “in the z-representation, X¢(x) = xyp(z).” or “X
multiplies the wave function by z”. We have to be careful, though: in reality the operator
X does not actually act on the wave function (which is just a scalar-valued function), it
acts on the kets in the expansion for the state, giving rise to this apparent effect.

This idea is easily extended to functions of z. For any function f(z) we can define an
operator F' which has the action

Fla) = f(z)|x) (2.80)

of multiplying each basis vector |z) in the position representation by the function f eval-
uated at the point x labeling the basis vector. When F' acts on arbitrary vectors it leads
to the result

Flv) = [ davta) Flo) = [ devi@)f(a)la) (2.81)

so that the wave function representing F'|t)) is just f(z)i(x). “In the x representation, F'
multiplies the wave function by f(z)”. The potential energy function V() is associated
with an operator of this type. In fact, all we are doing here is providing another way
of defining a function of an operator, i.e., we can formally view F' as a function of the
operator X, i.e., FF = F(X). In a representation in which X just multiplies by « the action
of F(X) is to multiply by f(z). This definition is easily verified to agree with our former
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one regarding series expansions in those situations where the series converges, and extends
it to allow for more general kinds of operator functions.

These ideas also extend to higher dimensions. We can define, e.g., the Cartesian operator
components X, Y, and Z, of the position operator R, through their action on the basis
vectors {|7)} of the position representation in three dimensions:

X|r) = Xz, y, 2) = z|x,y, z) = x|, (2.82)
Y|P =Yz, y, 2) = ylz,y, 2) = y|F), (2.83)
Z|M) = Zlx,y, 2) = z|x,y, 2) = 2|7). (2.84)

Thus, X, Y, and Z multiply the basis vectors of the position representation by the cartesian
components of the points where they are centered. The position operator R is a vector
operator, i.e., a collection of the three operators X,Y, and Z which transform like the
components of a vector in R3. The effect of the operator R on the position states

R[) = 77 (2.85)

is to multiply them by the position vector with which they are labeled. In this represen-
tation, then,

Ry = / dr (7 By = / i (7)) = / & @) P, (2.86)

Thus, the effect of R is to multiply the wave function () by 7. Finally, we can extend
this to functions of 7, as in one-dimension. For each function V(7) we can define an

—

operator V = V(R) such that
Vir) = v(n)r) (2.87)
and so
Vi) = [ @ ue Vi = [ dr v n. (285)
Thus the operator V' acts in the 7 representation to multiply the wave function by the
function V(7).

These kinds of multiplicative operators can be defined for any representation. If {|a)}
is an ONB for the space, we can define an operator A such that

Ala) = ala)

for all basis vectors of this representation. Then, for any function g(a) we can define an
operator G = G(A) such that
Gla) = g(a)|a), (2.89)

then

Gli) = [ da v(a)Gla) = [ da g(@)u(a) jo). (2:90)

so that G acts in the « representation to multiply the wave function in that representation
by the function g(a).
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2.2.3  Differential Operators

Another class of operators can also be defined through the position representation. Let
us define operators D, D,, and D, in such a way that if

) = / B () |7, (2.91)

then 9
D) = / r 221, (2.92)

Thus, D, replaces the wave function in the position representation by its partial derivative
with respect to . Similar actions are implicitly defined for D, and D,. Such operators are
differential operators in this representation. These three operators form the components
of the vector operator D which “takes the gradient in the 7 representation”. That is to
say,

Dly) = /d3r Vi |7). (2.93)

A more useful variation of this operator is obtained by multiplying it by the square root of
—1. We thus introduce the operator K = —iD which we will refer to as the wavevector
operator, and define through the expression

Rio) = [ & (90 1. (2.94)

It is instructive to consider the action of this operator in the k representation. By as-
sumption, an arbitrary state can be expanded in the k representation in the form

) = [ & (i (2.95)

where
() = / (;% eFTY(R). (2.96)

Thus,
—iVY(F) = / % [—iVe R Ty (k). (2.97)

The gradient operator, which acts only on the position variables, just “pulls down the
wavevector” from the exponential, i.e.,

e d3k ik T
Thus, we deduce that

&)= [@r [vow] = [ar [ ] % FEru@®|m (29)

Interchanging the order of integration, this becomes

— — - 3r =,
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In the last integral we recognize the definition of the basis states |E> Thus we obtain the
simple result

mw:/fkm<m> (2.101)

Thus, K acts “in the k representation” to multiply the wave function in that representation
by k. Since K really acts only on the kets |k), we deduce the action

K|E) = E|E). (2.102)

Thus, the operator K plays the same role in the k representation that the operator R
plays in the 7 representation, i.e., it simply multiplies the basis vectors by the value of
the parameter & that labels them. (It is useful to think of this operation as one in which
the operator “pulls out” the label.) Similarly the kinetic energy operator

!

2 72 2
K hK

H =
0 2m  2m

is a multiplicative operator in the k representation that multiplies the wave function by
R%k? /2m, but is a differential operator in the 7 representation whose action is take (7)
onto the function — (h?/2m) V2.

Thus, whether an operator is a multiplicative operator or a differential operator is very
much a representation-dependent statement. It is left as an exercise to show that in the
k representation the position operator R actually acts as a differential operator, i.e., that

ﬂw:/fmﬁw®mx (2.103)

where V}, means to take the gradient with respect to the variables k., k,, and k., and
that in the position representation the kinetic energy operator Hy is a differential operator
proportional to the Laplacian (as in Schrodinger’s equation).

2.2.4 Ket-Bra Operators

A very useful class of operator can be defined using any two vectors in the space. If |¢)
and |x) are vectors in S then we can define an operator

= |p){x| (2.104)

whose action on any state [1)) is as follows:

Alp) = |p){x[¥) (2.105)

which is just the vector |¢) multiplied by the number (x|¢). A linear sum of operators
of this form is itself an operator. This “ket-bra” form is particularly useful for expressing
what are referred to as projection operators.

2.2.5 Projection Operators: The completeness relation

An operator P is said to be a projection operator, or simply a projector, if it satisfies
the idempotency condition

P2 =P (2.106)
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Note that this implies that P™ = P for all integers n > 1. As an example, if |¢) is square
normalized to unity, so that (¢|¢) = 1, then the operator

Py = [p)(¢] (2.107)
is a projector onto the direction of the vector |¢). It is a projector because
P2 = (lo)(el) (I8)(¢]) = [o){(dle) (| = |8)(¢] = Py, (2.108)

where the central inner product collapsed to unity because of the normalization of the
state |¢).Thus, the action of P on an arbitrary state |¢) is to take away those parts of

|t)) not lying along |¢), and to leave the part lying along the direction of |¢) alone.
As a simple extension of this idea we note that, a set of states {|i)} forms an
orthonormal set of vectors so that (i|j) = 6;;, then the operator

P= Z |i) (] (2.109)

is also a projection operator because
p? = (ZIZ’)(Z’) ZIJW\ =D 3 @G =D @6l =Yl = P,

=1 j=1 i=1 j=1 i=1
(2.110)

Comment: Projection operators always “project onto something”. In this latter case,
the operator P projects onto the subspace spanned by the vectors in the orthonormal set.
Recall the definition of a subspace:

A set of vectors S’ C S which is a subset of a vector space S is a subspace
of S if it is closed under the same operations that are defined in the parent
space.

Any subset of vectors spans some subspace, namely the subspace of all vectors that can be
produced by them by forming all possible linear combinations of vectors in the subset. In
the example above, if the orthonormal states {|i)} were complete, so that they actually
formed an ONB for the space, then the subspace that they project upon would be the
entire space. Since, for such a basis, an expansion of the form

) = D _livdile) (2.111)

exists for any state [¢)) in the space, the action of the operator P on such a state
Ply) =3 [i)(l) = [v) (2112)
is to just reproduce the state it acted on. We deduce that if the states {|i)} form an

orthonormal basis, then
> iyl =1. (2.113)

This relation, which is of fundamental importance is referred to as a decomposition of
unity in the basis {|¢)}, or as a statement of the completeness relation for the states

{19)}-
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These ideas are also extensible with some care to continuously-indexed states. If the states
{]a))} form an ONB for the space S then the operator

Pa = ) (o (2.114)

is not a projection operator, since the state |«) is not square-normalized to unity. Indeed,
it is of infinite norm, since (o|a) = 6(a— ) = §(0). However, the integral of this operator
over any region of the possible values taken on by the parameter « is a projector. That
is, if we define

b b
Pab:/ da pa:/ da |a){ (2.115)

then

P2, = ( / " do |a><a|) ( / ol |a'><a’> -/ " do / ol o) {ala’)e].  (2116)

In this last expression, the normalization condition on the states |«) yield a delta function,
which means that

b b b
Pgb:/ da/ do/ |a>5(a—o/)<o/|:/ da [a){a] = Pay (2.117)

(Note, that in any expression in which one is integrating over a delta function, one simply
removes the delta function and the integral sign and replaces the integration variable
wherever it occurs with the value which makes the argument of the delta function vanish.).
We will refer to an operator such as p, as a projector density, since it’s integral always
gives a projector (in the same way that the integral of a charge density always gives a
charge, etc.). The action of p, on an arbitrary state |1) gives a vector

pal¥) = l){aly) = ¥(a)la)

along the direction of the state |a) multiplied by the expansion coefficient ¢ («). Thus,
we will continue to refer to p,|1) as the “part of |¢) lying along the state |o)”. At any
rate, it is easy to see that p, strips away any part of 1) not lying along that direction in
state space.

As in the discrete case, if we now consider the projector which includes all the states in
the basis, we project onto the entire space. Thus, since we can always write an arbitrary
state in the form

0} = [ darla)(als) (2118)
the action of the operator
P= /da |a) (e, (2.119)

which has no restrictions on the values of «, is to reproduce whatever state it acts upon,
ie.,

Ply) = / dov |a) () = [) (2.120)

This being true for all |¢), we deduce the completeness relation

/da la)(a] =1 (2.121)
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for continuously-indexed states.

These decompositions of the identity operator facilitate the development of expansions
for vectors and inner products, as demonstrated below:

X) =1|x) = Z i) (i[x) = ZX B (2.122)

mﬁmm:/mmmm:/mmwm (2.123)
o = (91 () = S telibibd = Y v (2.124)

<ww4wmm:/mwmmm:/MWWMM. (2.125)

In this way representation independent expressions (on the left) are converted into repre-
sentation dependent expressions (on the right) by inserting an appropriate “complete set
of states”. Expressions such as (¢|x) are representation independent. Expressions such

as
D@l = > vix (2.126)
K3 K3

are representation dependent, because they depend upon a particular choice of representa-
tion, i.e., of basis. (Note that expressions such as |¢)(7)) or \{b(l;)) are actually “ill-defined”,
have no official meaning, and are to be avoided. While we probably can guess what is
intended, they are ambiguous and an abuse of standard usage. The view here is that the
functions () and ¢(E) give specific representations of a single underlying state vector
|1), and not the other way around.)

2.2.6 Matriz Elements

The matrix element of an operator A between (or connecting) the states |x) and |4} is
the scalar quantity

(W] (Alx)) = (¥lxa), (2.127)
where [y 4) = Alx).

2.2.7 Action of Operators on Bras of S*

We have defined the action of operators in the space of kets |x) € S. We now extend
the definition to allow them to operate in the space S* of bras (x|, by requiring that any
matrix element be unchanged if the operator acts to the left, rather than to the right.
Thus, for all |x), 1) € S we require that

(WI(Ax) = (L[A) [x) = (P1AIx) (2.128)

where in the last expression we have removed the parentheses since now (by construction)
A can act in either direction. (Note that expressions like A(y| and |x)A are undefined.
Operators can only act on vectors when they are next to the vertical line appearing in
the notation.)

If the state |¢) is a unit vector, then the matrix element (p|A|¢p) is referred to as the
expectation value of the operator A taken with respect to the state |¢).

An extremely important consequence of this definition of the action of an operator on
bras is brought out by the answer to the following question: If A|x) = |¢), does it follow
that (x|A = (¥|? One might be tempted to think so, since the states |x) and [¢) € S are
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supposed to be in 1-1 correspondence with the states (x| and (| € S. Nonetheless, the
answer is “no”. There is a relationship similar to this that we can write, but it involves
what is referred to as the Hermitian adjoint of the operator A. The point is that we
have to extend the 1-1 correspondence to include the relationship that exists between the
operators that act in S and those that act in S*. We explore this below.

2.2.8 Hermitian Conjugation

We have previously established a 1-1 correspondence between the ket’s |x) of S and the
bra’s (x| of S* (which in any representation can be thought of as the correspondence be-
tween column vectors and the complex-conjugated row vectors). Corresponding elements
of S and S§* are said to be Hermitian Conjugates, Hermitian Adjoints, or simply
Adjoints of one another. Thus S is the linear vector space adjoint to S*. Similarly, the

bra (x| is the adjoint of the ket |x). It is convenient to use the notation [---]* to denote
the adjoint of [---]. Thus we write

0T = (x] (O™ =10 (2.129)
which shows that [[---]7]" = [--]. We can also refer, e.g., to the ONB of bra’s {(i|} as

being adjoint to the ONB of ket’s {|¢)}. This gives rise to the following point. Given the
expansion

) = _bili) (2.130)
where, of course, b; = (i|x), and the similar expansion

(xI=>elil (2.131)

i

associated with the dual space, how are the expansion coefficients b; and c¢; related to one
another? To find out, note that

(xli) = Zci (ilj) = Zci 8ij = cj = ({Jx))" = bj. (2.132)

A i

Thus we can write ¢; = b}, and therefore if
) =D xili) =D liilx) (2.133)

then
ol =3 Gl = S (il (2.134)
K3 K3
In general, this implies that if A\ is an element of the field associated with the space S,
then A* is the corresponding element of the field in S* (i.e., the scalar which plays the
same role in S* that A plays in S). Thus, the rule for taking the Hermitian conjugate of
any complex number is simply to take its complex conjugate. We write

AT =\* T =\ (2.135)

We now extend this idea to operators. If the operator A maps the ket |x), say, onto
the ket |¢) then the adjoint of the operator A must have the corresponding effect in the
adjoint space. Thus, the operator AT (which is read “A adjoint” or “A dagger”) has the
effect that if

Alx) = ) (2.136)
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then
(x|A* = (Y. (2.137)

This is the relationship we were looking for in the question posed above. It shows that
when we “flip things around” we have to replace operators by their adjoints. Thus we can
write

[T = (x]AT (2.138)

A few moments of study of the adjoint process allows the following rules to be developed:
To take the adjoint of any product of operators, numbers, bra’s, ket’s etc., (1) replace
all elements by their adjoints (bra’s are replaced by ket’s, operators by their adjoints,
numbers by their conjugates), and (2) reverse the order of all elements in the original
product. Once this operation is performed, any numbers can be commuted past any
operators or vectors to simplify the expression. As an example, note that

(BT = (€lo) = (pl€)* (2.139)
[(W[Alp)] T = (¢l AT|v) = (] Alp)*

The first of identity in each of the last two equations follows from the rules for taking
the adjoint, the second from the fact that both quantities are scalars, and the adjoints of
which are just the complex conjugates. Finally, as a more complicated example we note
that the operator

A = X(¢|B[S) [v)(ul (2.140)

has as its adjoint
AT = )] €| BT|g)A". (2.141)

A short list of properties of the Hermitian adjoint are given below:

AT = A (2.142)
AT = A*At (2.143)
[A+B]" = AT +B* (2.144)
[AB]t = BtA" (2.145)

This last rule, which displays the reversal of order of the adjoint of a product, is easily
proved. If AB|y) = A|g) = |$), then the adjoint is

(0l = (¥plAT = [lYp)|TAT = [Bly)] T AT = (y|BTAT (2.146)

from which we see that if ABJy) = |¢), then (¥|BTA' = (¢|, which proves the result.
We are now in a position to define some additional terms, one of which appears in the
statement of the second postulate.

2.2.9 Hermitian, Anti-Hermitian, and Unitary Operators

An operator A is Hermitian or self adjoint if it is equal to its Hermitian adjoint, i.e., if
A=AT, (2.147)
In terms of matrix elements, the property

(V] Alg) = (o|AT )", (2.148)
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which is true for any operator, reduces for Hermitian operators to the relation

(V| Alg) = (d|AlY)". (2.149)
As a special case this implies that (¢|A|p) = (| A|$)*, which implies that expectation
values of a Hermitian operator are strictly real.

An operator A is anti-Hermitian if it is equal to the negative of its adjoint, i.e., if
A=At (2.150)

The matrix elements of an anti-Hermitian operator obey the easily-derivable condition
(V|A|p) = — (@] A|y)* ;which implies that (¢p|A|p) = —(p|A|p)*. Thus, expectation values
of anti-Hermitian operators are strictly imaginary.

Note that if A is any operator, it may be written in the form

1 1
A = S(A+AT)+5(A-4A7) (2.151)
= A+ Az
where Ay = 3 (A+ A™) is Hermitian (take its adjoint and see!) and A4 = (A — AT) is

anti-Hermitian (likewise!). Thus an arbitrary operator can be uniquely decomposed into
a sum of Hermitian and anti-Hermitian operators.

An operator U is unitary if its adjoint is equal to it inverse. Thus, for a unitary operator
Ut =u"1, (2.152)

or equivalently,
UUt=U"U =1. (2.153)

We will see that unitary operators (or the transformations they induce) play the same role
in quantum mechanical Hilbert spaces that orthogonal transformations play in Cartesian
vector spaces such as R3.

2.2.10 Matriz Representation of Operators

Let {|n)} be an ONB for the space S and let A be an operator acting in the space. From
the trivial identity
A=141 (2.154)

we obtain a representation for A by substituting a decomposition of unity in the {|n)}
basis. Thus, we obtain

A= (Z n><n> A (Z n’><n'> (2.155)
With the different dummy indices we can now remove the parentheses to obtain

A= "|n) (n|Aln") ('] (2.156)

n,n’

which we write in the form
A= "|n) App (0], (2.157)

n,n’

where
App = <n|A|n’> (2.158)
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is the matrix element of A connecting the basis states |n) and |n/). Thus, we obtain a
decomposition of the operator A in the “ket-bra” form, which makes its action on any
state self-evident. The operator A, therefore, is completely determined by its matrix
elements in any ONB. Thus, suppose that

|#) = Al) (2.159)

for some states |¢) and |¢p). The expansion coefficients for the states |¢) and |p) are
clearly related. Note that if

BEEDIND ) =¥, n) (2.160)

then
P = (nld) = (n|A) = (n|Aln) (' [¢) (2.161)
which can be written
Gp = Apnrthy. (2.162)
But this is precisely the form of a matrix multiplication
Ay A oo
d)l A21 AQQ .. ¢1

by | = Vo (2.163)

of a matrix having elements A,,,,» with a column vector having elements 1,,, resulting in
a column vector with elements ¢,,. Thus we see that in the row-vector-column vector
representation induced by any discrete ONB, an operator is naturally represented by a
matrix having entries which are just the matrix elements of that operator connecting the
different members of the basis. Note that in producing the matrix of elements A,,,, =
(n|A|n’) the bra corresponds to the row index, while the ket corresponds to the column
index. Note also that this expansion of the operator

A= "[n) App (0] = 1) Arr (1] + 1) Ago (2] + - + [2) Ao (1] + ... (2.164)
in ket-bra form, has the matrix interpretation

A A - A 0 - 0 App --- 0 0
Aoy Ay - _ 0 0 - |4 0 0 - |4 Ay O - 4o

(2.165)
where we are simply filling up each slot of the matrix one element at a time. It is
worthwhile looking at a few additional examples. Consider the matrix element (i)|A|¢p)
between arbitrary states |¢) and |¢). Inserting our expansion for A this becomes

(WIAlg) =Y (¥ln) Apw (n']), (2.166)

n,n’

in which we recognize ¢,,, = (n/|¢) and 1), = (¢)|n). Thus, we obtain the result

(WIA[G) =Dt A by (2.167)

n,n’
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which has the matrix interpretation associated with the following operation

A A &
. Agr Az - </>1
(WlAlg) = (1 v5 - ) S 2 | (2.168)
As another example, consider the operator product of
A= |n) Apnr (0] (2.169)
and
B=>|n) By (n|. (2.170)
The product operator C' = AB has a similar expansion, i.e.,
C=> " |n) Cpnr (0| (2.171)
where
Crnr = (n|C|n’) = (n|AB[n') => " (n|Aln")(n”|Bn) (2.172)
Thus
Cnn/ = Z Ann”Bn”n’ .
which is equivalent to the matrix multiplication
Cn Ci2 -+ Ay A - Bi1 Bio
Co1 Coo Agr Az - By B
. . = . . . . (2.173)

As a final example, consider the matrix representing the adjoint of an operator. If
A= |n) A (0] (2.174)

then by the two-part rule we developed for taking the adjoint, it follows that

AT =) A, (), (2.175)

Since n and n’ are simply summation indices we can switch them to find that

A= 3} A 0] = 3 In) Ay (0], (2.176)

n,n’ n,n’

from which we deduce that
Al = AL (2.177)
+

means the

To interpret this properly a little care must be taken with this notation: the symbol A

means the n,n’ matrix element of the operator AT, while the symbol A%,
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complex conjugate of the n/, n matrix element of the operator A. Thus, in any ONB the
matrix representing A% is the complex-conjugate transpose of the matrix representing
A. A Hermitian operator is equal to its adjoint, so that the matrix elements representing
such an operator obey the relation

(nlAln") = Apy = (0'|Aln)* = A}, (2.178)

"
Thus, for a Hermitian operator
*
Ann/ = An/n

which implies, e.g., that the diagonal elements of the matrix representing a Hermitian
operator are real. More generally, this shows that any matrix A representing a Hermitian
operator is equal to its complex-conjugate transpose, i.e., A = (AT)*. Any matrix obeying
this relationship is a Hermitian matrix. The symmetry properties of an anti-Hermitian
operators and matrices are left as an exercise.

Let us give some examples, suppose that in a 3-dimensional vectors space the operators
A and B are represented in some orthonormal basis by the following matrices

0 2 7-3i 4 4 14
A= -2 -3 4 B=|( 0 —6 246 |. (2.179)
T+3 4 8 8 8 8

Note that we use non-italicized boldface symbols to represent the matrices in order to
distinguish them from the operators themselves. The matrices AT and BT representing
the adjoints of the operators A and B are

0 2 —3i+7
At =(AT' = -2i -3 4
3i4+7 4 8

I
>

and
—4i 0 8
Bt=B")"'=| -4 -6 8|,
14 2-6i 8

from which we see that the operator A is Hermitian, and is represented by a Hermitian
matrix, while the operator B is not Hermitian. The latter operator can be written as a
sum of Hermitian and anti-Hermitian parts, however, as can the matrices representing it,
i.e., we can write

B=By +B4
where
1 0 2 11
BH:§(B+B+): -2 -6 5+3i
11 5-3¢ 8
and
1 43 2 3
By=5(B-Bf)=| 2 0 -3+3
-3 3+ 3 0

It is an interesting fact that neither the transpose or the complex conjugate of an operator
are, by themselves, well defined concepts; i.e., given an operator A, there is no operator
that can be uniquely identified with the transpose of A. Although one can form the
transpose AT of the matriz A representing A in any basis, the operator associated with
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the transposed matrix will not generally correspond to the operator associated with the
transpose of the matrix representing A in any other basis. Thus, the act of transposition
is a representation dependent operation. Similarly, complex conjugation can be performed
on matrices, or on matrix elements, but it is not an operation that is uniquely defined
for the operators themselves. It is somewhat surprising, therefore, that the Hermitian
adjoint, which in a sense combines these two representation dependent operations, yields
an operator that is independent of representation. This again emphasizes one of the basic
themes, which is that bras, kets, and operators are not row vectors, column vectors, and
matrices. The former may be represented by the latter, but the representation and that
which is represented are two conceptually different things.

Matrix representations of this form were developed extensively by Heisenberg and gave
rise to the term “matrix mechanics”, in analogy to the “wave mechanics” developed by
Schrodinger, which focuses on a wave function representation for the underlying space.
Clearly, however, whether one has a wave mechanical or matrix mechanical representation
depends simply upon the choice of basis (i.e., discrete or continuous) in which one is
working.

Extension to Continuous Representations - Let {|a)} be a continuous ONB for the
space S and let A be an operator acting in the space. From the trivial identity

A=1A1 (2.180)

we obtain a representation for A by substituting a decomposition of unity in the {|a)}
basis. Thus, we obtain

A= ([aatarial) a( [ aarionia). (2181)

With the different dummy indices safely in place we can now remove the parentheses to
obtain

A= [ da [ 4o’ o){olajo) (@ (2.182)
which we write in the form
A= / da/ da’ |a) Ala, o) (| (2.183)
where the “kernel”
Al !) = (al o) (2.184)

of this integral relation is just the matrix element of A connecting the basis states |o)
and |o/). Thus, we obtain a decomposition of the operator A in the “ket-bra” form,
which makes its action on any state self-evident. The operator A is, therefore, completely
determined by its matrix elements in any continuous ONB. Thus, if

lp) = Alv) (2.185)

for some states

|@:/mwwm (2.186)

and

) = / day(a) |o) (2.187)
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then
(@) = (al6) = (alAl4) = [ do’ (alale’)(e’l¥) (2.188)

ba) = / do’ A(a, o) (o). (2.189)

This is of the form of a “continuous” matrix multiplication, with integration replacing the
summation process. It is worthwhile looking at a few additional examples. Consider the
matrix element (1| A|p) between arbitrary states |¢) and |¢). Inserting our expansion for
A this becomes

(W] Alg) = / do / do’ (1) Ao, o) (o) (2.190)

in which we recognize ¢(o’) = (&/|¢) and ¥*(a)) = (¥|a). Thus, we obtain the result

(| Al ) = / da / do’ ¥ (a) A(a, o) p(c) | (2.191)

which is the continuous analog of the matrix expression we wrote earlier. As a final
example, consider the operator product of the operators

A= / da / da’ |a) A(a, ') (| (2.192)
" B= / da / da’ |a) B(a, o) (o] (2.193)

The product C' = AB has an expansion

C= / da / da’ ) Ca, ') (@] (2.194)
in which
C(a,a’) = (a|Cla’) = (a|ABla/) = / da” (a]Ala")(a"|B|a). (2.195)
Thus, we find that
Cla,a’) = / do’" Al o) B, o) (2.196)

which is the continuous analog of a matrix multiplication.
The adjoint of an operator has a kernel which is the continuous analog of the “complex-

conjugate transpose”, i.e.,
At (a,d) = A*(, ). (2.197)

For the kernel representing a Hermitian operator in a continuous basis we have the simpler
relationship A* (o, /) = A(d/, ).

Examples:
As an example, the operator X has as its matrix elements in the position representation

(X1 = (7'|(2l) = {77 = 2867 —7) (2:198)

This allows us to construct the expansion for this operator

X = /d3f’/d3F 7S (7 — F) (] = /d3F ™) a(F] (2.199)
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where the double integral has been reduced to a single integral because of the delta
function. The operator X is said to be diagonal in the position representation, because
it has no nonzero elements connecting different states in this representation. This concept
of diagonality extends beyond the position representation. In particular, an operator A
is said to be diagonal in the {|i)} representation if

Ay = (ilAlj) = Asbij (2.200)
so that

A:ZW ij (] = Z\ Aibij (j] = ZI (2.201)

which only has one summation index, in contrast to the general form which requires two.
In a representation in which an operator is diagonal, therefore, it is represented by a
diagonal matrix

A; 0 O
0 A2 O

A=1 0 0 A;

Similarly, in a continuous representation {|a)}, an operator Ais diagonal if

Ao, d’) = (alAla’) = A(a)d(a — ), (2.202)

so that
/da/do/ |y A, o) (| —/da/da |y A(a)d(a — a’) (], (2.203)
A= / da o) A()(al. (2.204)

It is easy to show that in any basis in which an operator is diagonal, it is what we referred
to earlier as a “multiplicative operator”. That is, if

G /da 1) g(a) (al, (2.205)
is diagonal in the {|a)} representation, and if [¢)) = [ do 1(c)|c), then
Glu) = [ da fa) g(e) taly) = [ da [o(a) w(a)ja) (2:200)

which shows that a diagonal operator G acts in the {|a)} representation to multiply the
wave function by g(«). We list below some additional operators and matrix elements in
the basis in which they are diagonal. Derivation is straightforward and left as an exercise.

1. The position operator
R= /d3F |7 7 (7] (F'|R|F) = 78(F — ") (2.207)
2. The potential energy operator

V= /de |7 V() (7] (V|7 = V() (7 — 7). (2.208)
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3. The wavevector operator
X:/d3E\E>E<E|, FNR R = Ro(k — k), (2.209)
4. The momentum operator
ﬁ:m?:/df‘%’ k) Rk (k| (k'|P k) = ik 6(k — k). (2.210)

5. The kinetic energy operator

_ W2K? h2k? I .
/d3k k) —— 5 (K| (FITIR) = 5 —6(k = k). (2211)

2m

It is important to point out that, although an operator may be diagonal in one represen-
tation, it is generally not diagonal in most others. As an _additional example we work out
below the matrix elements of the wavevector operator K in the position representation.
Recall that the wavevector operator K = —iD is a differential operator in the position
representation. This means that for any state 1)) = [ d®r ¢(7)|F), the state K |1) is given
by the expansion

Rlw) = / Pr [-i9u)] 7). (2.212)

On the other hand, we know that we can always write
K= /d3 /d3 "R K (7,7 (P (2.213)
where K (7,7") = (7| K | 7'), so that
Rly) = / dr / ' |7 R (7, 7) (7 ) = / i { / & B ) o) 7). (2.214)
Comparing the last equation to (2.212) we deduce that for any wavefunction (7),
/ ' R, ) () = ().

Comparing this to the basic property associated with the gradient of the delta function,
namely

/ &' V(7 — ) F(7) = £(7),

which holds for any function f(7), we deduce that K (7,7') = —iV§(7 — 7). Thus the
matrix elements of the wavevector operator in the position representation take the form

(FIK |7y = iV — 7).

Although these matrix elements appear to be zero everywhere, the wavevector operator is
not diagonal in the position representation. The reason for this is that the gradient of the
delta function (or the derivatives of the delta function in general), represent a limiting
process involving the difference between two values of a function infinitesimally displaced
from the diagonal (e.g., ¥ = 7+ 7). The example above is useful in that it shows that
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even differential operators can legitimately be viewed as having matrix elements, although
their matrix elements involve very odd distributional functions, such as the derivatives of
delta functions. In a similar fashion, the following matrix elements are readily established

(k| R|E"Y = iVis(k — k'), (2.215)

2
(F|T |7y = —;—mV%(F— ) (2.216)

where in the last line it is the Laplacian of the delta function that appears in the expression
for the matrix elements of the kinetic energy operator.

2.2.11 Canonical Commutation Relations

It is clear that in the space of a single quantum mechanical particle, there is a_very
close relationship between the position _operator R and the wavevector operator K or
equivalently, the momentum operator P = hK. This relationship is often expressed in
terms of the commutation relations between the different cartesian components of these
operators. These relations, which are referred to as canonical commutation relations
are easy to derive. We note first that the Cartesian components of the position operator
commute with one another, i.e., their action on the basis in which they are diagonal shows,
e.g., that

XY |r) = ay|F) = YX|F) (2.217)

since this is true for each element of an ONB we deduce an operator identity XY =Y X,
or [X,Y] = 0. This extends to the operator Z as well, so that we can write, quite generally,

(X, X,] = 0. (2.218)

By an analogous argument it is found that the Cartesian components of the wavevector
or momentum operator commute with one another, i.e.,

(K, K;] =0 =[P, Pj]. (2.219)

On the other hand, the Cartesian components of position do not generally commute with
the Cartesian components of wavevector or momentum. To see this it is useful to work
in a specific representation (either one would suffice). In the position representation, we
note that for an arbitrary state |i) represented by the wave function ¢(7),

.0 .0

On the other hand,

oy

KX = =i a0} = =i8,0(0) + 5 ) (2:221)

where we have used the standard relation 0z;/0x; = 6;;. Thus the action of the commu-
tator [X;, K; ] = X;K; — K;X; on such a state is given in the position representation by
the expression

(X, K|9(r) = —ixi% + {659 (7) + xi%} = i8;9(F). (2.222)
J

Ox;j
This being true for all states |¢/) we deduce the operator identity

[Xs, K] = 16y (2.223)
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or the equivalent relation expressed in terms of the Cartesian components of the momen-
tum operator

(X, Pj] = ihéi;. (2.224)

Thus, the components of position and momentum along the same direction of space do
not commute with one another. More generally, one can derive the relationship

R-a,K -b=ia-b (2.225)

for arbitrary components of the position and wavevector operator. These basic commuta-
tion relations can be used to develop more complicated commutators involving functions
of the position and wavevector (or momentum) operators.

2.2.12 Matriz Elements of Unitary Operators (Changing Representation)

If U is a unitary operator then it obeys the unitarity condition
UtU =U0U" =1. (2.226)

We can express this relationship in terms of the matrix elements of U in any ONB {|¢;)}
for the space, in the form

> UkUk; = 645. (2.227)
k

In this expression, Uy; = (¢4|U|¢;), while the matrix elements of U™ satisfy the relation
U;,rc = Uy;;. This leads to the result

> UUk; = 635, (2.228)
k

which, we assert, looks something like the orthonormality relation for a set of vectors. To
make this a little more clear, let us define a set of vectors

i) = Ukilé) (2.229)
k

and

us) =Y Ukjl ) (2.230)
k

whose expansion coefficients in the {|¢,;)} representation are the columns of the matrix
representing the unitary operator U. The inner product of these vectors is

(uslus) =Y UiUrj = 6. (2.231)
k

Thus, the set of vectors {|u;)} form an orthonormal set. Since they are also equal in
number to the columns of the matrix representing U, and therefore to the number of
basis vectors in the original basis, these vectors form another ONB for the same space. A
unitary operator U, therefore, allows us to construct a new orthonormal basis from the
original one. In fact, U is precisely that operator which maps the original basis vectors
onto the new ones. To see this, note that by construction,

u) = Ukilr) = > _(0nlU16:) k) (2.232)
k k
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Changing the order of the matrix element (a number) and the vector in the last expansion,
we obtain

ui) =D o) (@elUles) = 1U|¢,), (2.233)

in which we have identified a decomposition of the unit operator in the original basis.
Thus, we find that
ug) = Uley). (2.234)

Thus, any unitary operator U maps an arbitrary ONB onto another ONB. The inverse
of this is also true. Given any two ONB’s for the space, there exists a unitary operator
which connects them, and which can be used to change representations from one basis
to the other. Let {|¢;)} and {|¢;)} be two arbitrary ONB’s for a space. Let U be the
operator that maps the ith element of the set {|¢;)} onto the corresponding element of
the set {|v,)}, i.e.,

Ulps) = |tpy)  fori=1,2,-- (2.235)

We will show that this operator is, in fact, unitary. To see this, note that the matrix
elements of this operator in the {|¢;)} representation are given by the expression

Uij = (b:lUlp;) = (#ilv;), (2.236)
so that we can expand U in the form
U =" 100Uss{051 = Y 16:)(0slt;) (03] = S 1,051 (2.237)
i3 i,J j

Note that in the last expression we have again identified a decomposition of the unit
operator, allowing for the simpler form. The adjoint of this relation is

Ut =" 1) (W] (2:238)
Thus, the product of U and its adjoint gives
UTU =3 ) o) (wlt)esl = DY 1oa)oile;l = oo =1, (2.239)
i i i i

the identity operator. Taking the product in reverse order, on the other hand, yields a
similar result

uut = ZZ |¢j><¢j|¢i><¢i| = ZZ Wj>5ji<1/’i| = Z ‘¢j><¢j‘ =1 (2-240)

Note that we have used the orthonormality relation associated with each ONB in sim-
plifying these expressions. Hence, the operators U and U™ are unitary. The operator U
takes kets in {|#;)} to kets in {|t);)}, while U™ takes kets in {|1/,;)} to kets in {|¢;)}. That
is, using the expansion for U,

Ut Iws) =D 16,)(0;10:) = |os), (2.241)

J

In the {|¢;)} basis, UT has matrix elements

U = (il UF15) = (¥i]8)). (2.242)
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Thus, we see that
Uij = ($:l9;) (2.243)
U;; = (Y;]¢;)- (2.244)

The practical use of these matrix elements comes when we wish to transform from one
representation to another. We first consider the transformation of vectors.

a) Transformation of Kets - Let |x) be an arbitrary ket in the space. It can be expanded
in either of the two bases considered above, i.e., we can write

Ix) = ZXZ‘ |b) (2.245)

where x; = <d)i|X>v or

NEDIPAL (2.246)

where x} = (¢;]x). The question is how are the expansion coefficients in these two bases
related to one another. To find out we use an appropriate decomposition of the identity
operator, i.e., we write

Xi = (@alx) = (@al1x) = Y (Bileo;) (9% (2.247)

J

But we have seen above, that the quantities (#;|1;) = Uj; are just the matrix elements
of the unitary operator connecting these two bases, while (¢;[x) = X/ is the expansion
coefficient in the other basis. Thus we have the relation

Xi = Y UiiXj, (2.248)
j

which is of the form of a matrix multiplication

Ui U - p
X1 Uy U --- X/l
X2 | = | 7 Xs | (2.249)

By a similar approach it can be shown that the reverse transformation is effected by the
matrix representing Ut. Thus, we have the relation

Xo=> U, (2.250)
7

b) Transformation of Matrices - If A is an operator it has matrix elements in the two
bases considered above of the form

Aij = ($;|Alo;) (2.251)

and
Ajj = (Wil AlY). (2.252)
To find the relationship between the matrices representing this operator in these two bases

we write

Aij = <¢i\1A1|¢j> (2.253)
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and insert decompositions of unity in the {|¢;)}. This yields

Ay = Z<¢i\¢k><¢k\A|¢k/><¢kl|¢j> (2.254)

k,k'

which we identify from above as

Aij =Y Uik Ay Ut (2.255)
ke, k'

which is of the form of a matrix multiplication A = UA’UY, where A is the matrix with
elements A;;. The reverse transformation is found in the same way, and yields the result
A’ =UTAU.

Before considering an example, it should be noted that unitary operators preserve
the norm of any vector that they act upon. This is intuitively reasonable, since they have
the simple effect of “changing the coordinate system”, in the same way that orthogonal
transformations do in real vector spaces, but is also quite easy to prove. If |y) is an
arbitrary vector which is taken by a unitary operator U onto the vector |¢) = U|x) then
the squared norm of the transformed vector is given by the relation

(¢lo) = (XU (U]x) = XIUTU|x) = (xIx) (2.256)
since UTU = 1.

Example (Extension to Continuous Representations)

Let |1) be an arbitrary vector in the space of a quantum particle in three dimensions, i.e.,
the space spanned by the vectors {|7)} of the position representation and by the vectors
{|IZ>} of the wavevector representation. We can expand the ket |¢) in either of these two
bases, i.e.,

\w»:/ﬁ%wwwm (2.257)
where ¢(7) = (F]y)) and
|ww:/d%w@b%> (2.258)

where ¢(E) = (EWJ) How are the expansion coefficients 1 (7) related to the expansion
coefficients ¢(k). We can find out in the same way as we just did for the discrete case,
i.e., we write

() = (Fly) = (F1|y) = /d3k (71k) (E[) (2.259)

which we write as

W(F) = / &k U, k)(k) (2.260)

where the (continuous) matrix elements of the unitary operator connecting these two bases
are
. . etk

Thus, we find that
ik

wa—/ﬁk@ﬁmwm (2.262)
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which, of course, we already knew. Similarly, we find that

—zk N

o) = [@rvtEnue = [ & gt (2.263)

Thus, the Fourier transform is just an example of a unitary transformation from one
continuous basis to another.

It is also possible to use the unitary transformation represented by the Fourier transform to
derive the matrix elements of some of the operators already encountered. As an example,
consider the position operator R, whose matrix elements in the position representation
are given by the expression (7| B |7') = R(7,7') = 76(F — 7). The matrix elements in the
wavevector representation can be obtained from this by a unitary transformation, i.e.,

R(kk") = /J‘/ﬁ (k, ™) R(F,7") U, k)
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which gives the result stated earlier without proof, namely, that
(E|R|E"Y = R(k,E') = iVio(k — k). (2.265)

2.2.13 Representation Independent Properties of Operators

There are a number of properties associated with operators which are independent of the
representation used to express them. These properties include:

The trace of an operator A, denoted by Tr(A), is the sum of the diagonal elements of
any matrix representing the operator, i.e.,

Tr(A) = Z%*Zﬁw (2.266)

7

for any orthonormal basis of states {|i)}. In a continuous basis, by definition,
'mm:/mm%@ (2.267)

The trace of an operator (or matrix) has many interesting properties. It is easily verified,
e.g., that in any finite-dimensional space the trace of a product of matrices (or operators)
is invariant under cyclic permutation of the elements in the product. That is,

Tr(ABCD) = Tr(BCDA) = Tr(CDAB) = Tr(DABC). (2.268)
As an important consequence of this fact, it follows that
Tr(UAUY) = Tr(UU T A) = Tr(A) (2.269)

which shows that the trace of A is invariant under a unitary transformation, and hence
is independent of the specific representation used to evaluate it.
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The determinant of an operator A, denoted det(A), is the determinant of any matrix
representing the operator, i.e.,

A Aro
Aoy An

det(A) = (2.270)

Basic familiarity with general properties of the determinant of a matrix will be assumed.
For example, the determinant of a 2 X 2 matrix is

Z ’ = ad — be, (2.271)

a
c

while the determinant of a diagonal matrix is just the product

ail 0 0
0 ag 0O -
0 0 azp 0 |= H a; (2.272)
. . 0

of the diagonal elements. Thus, e.g., the identity operator has a determinant of unity,
det(1) = 1. In addition, it turns out that the determinant of a product is equal to the
product of the determinants, i.e.,

det(ABC) = det(A) det(B) det(C). (2.273)
This last result implies that
det(UAU™) = det(U) det(A) det(UT) = det(UHU) det(A) = det(A), (2.274)

in which we have used the result in both directions to recombine the product of the
determinant into the determinant of the product det(UUT) = det(1) = 1. Thus, the
determinant of an operator is also invariant with respect to a change of representation.
Finally, you may recall that a necessary and sufficient condition for the inverse of a
matrix to exist is that its determinant not vanish. This condition extends to any operator
represented by such a matrix, i.e.

If det(A) = 0, then A is non-invertible or singular.
If det(A) # 0, then there exists an inverse operator A~! such that AA=! = A=14 =1.

2.2.14 FEigenvalues and Eigenvectors

A nonzero vector |x) is said to be an eigenvector of the operator A with eigenvalue a
(where generally, a € C) if it satisfies the eigenvalue equation

Alx) = alx). (2.275)

The set of eigenvalues {a} for which solutions to this equation exist is referred to as
the spectrum of the operator A, and we write spectrum(A4) = {a}. The spectrum of
an arbitrary operator can be real, complex, continuous, discrete, mixed, bounded, or
unbounded.
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A number of features follow from the eigenvalue equation. For example, it follows that if
|x) is an eigenvector of A then so is any multiple A|x) of |x). This follows from the fact
that A is a linear operator so that

AQX)) = Mlx) = Aalx) = a(A[x)). (2.276)

Thus, only the direction in Hilbert space of a given eigenvector is unique.

By taking the adjoint of the eigenvalue equation
Alx) = alx), (2.277)
we see that if |x) is an eigenket with eigenvalue a then
(x|AT = {xla", (2.278)

which implies that (x| is an eigenbra of AT with eigenvalue a*.

An eigenvalue a of an operator is degenerate if there exists more than one linearly
independent eigenvector corresponding to that eigenvalue. The degeneracy n, of an
eigenvalue a is equal to the maximum number of linearly independent eigenvectors associ-
ated with it. We also say that an eigenvalue with degeneracy n, is n,-fold degenerate. An
eigenvalue with only one linearly independent eigenvector is said to be nondegenerate.

It should be clear, that any set of linearly independent vectors form a basis for a subspace
of the original space (namely, the subspace formed from all possible linear combinations
of those vectors). It follows, also, that any set of n linearly independent vectors |x;), each
of which is an eigenvector of an operator A associated with the same n-fold degenerate
eigenvalue a, forms a basis for an entire subspace S, each vector of which is an eigenvector
of A with that same eigenvalue. Again, this follows from the assumption that we are
dealing with linear operators, since if

Alx;) = alx;), (2.279)

for i =1,2,---n, then the action of A on any linear combination

) =) Nilxa) (2.280)
i=1
of these vectors is
Al =3 Nl = 3 ) =a 3 A = alu). (2.281)
i=1 i=1 i=1

Thus, any vector [¢) in S, is also an eigenvector with the same eigenvalue. Within this
subspace we may form linear combinations of the linear independent vectors |y,) using
the Gram-Schmidt process to construct an orthonormal basis of eigenvectors for this
eigensubspace.

From the definitions given above it is readily verified that the basis states of the position
representation are eigenstates of the position operator, and are actually labeled by the
associated eigenvalues. The position states are also eigenstates of the potential energy
operator. Similarly, the basis vectors of the wavevector representation are eigenstates of
the wavevector operator and are similarly labeled by their associated eigenvalues. They
are also eigenstates of the momentum operator and of the kinetic energy operator.
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2.2.15 Figenproperties of Hermitian Operators

The second postulate (which we introduced some time ago now) associates observables A
with Hermitian operators A. The reason for this largely stems from the special properties
associated with such operators. These properties include the following:

Reality of the Eigenvalues - If A is a Hermitian operator, so that A = At and |y) is one
of its eigenvectors, so that A|x) = a|x), then

(XAlx) = alx|x)- (2.282)
Now for a Hermitian operator the adjoint of this equation is
(X[Alx) = a”™(x]x)- (2.283)

Comparing the last two relations we deduce that
a* =a. (2.284)

Thus, we conclude that the eigenvalues of Hermitian operators are real. Formerly we
showed that expectation values of Hermitian operators are real. The two statements
are obviously closely related. The requirement that measurable quantities be real valued
motivates the identification of observables with Hermitian operators. Note that, because
of the reality of the eigenvalues, the adjoint of the eigenvalue equation for a Hermitian
operator has the simple form

(x|A = (xla. (2.285)

Orthogonality of Eigenvectors - It is straightforward to show that eigenvectors of a Her-
mitian operator corresponding to different eigenvalues are necessarily orthogonal. Let |y)
and |x’), be eigenvectors of a Hermitian operator A corresponding to eigenvalues a and
a’, respectively. Thus, we can write

Alx) = alx), (2.286)
and
AlX) = d'[X'). (2.287)
Taking the inner product of the first of these with |x’) we find that
(X[Alx) = a{X'[x)- (2.288)

But the adjoint of the second expression shows that
XA = (|, (2.289)

where we have used the reality of the eigenvalues deduced above. Taking the inner product
of this equation on the right with |x), we find that

(XAIx) = a'(X'[x)- (2.290)
Equating these two expressions for the matrix element (x'|A|x) we find that
a(X'[x) = ' (X'|x), (2.291)

or

(a—d){X'Ix) =0. (2.292)
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There are two ways in which this product can vanish. Either a = o/, in which case we
haven’t found out anything, or a # a’, in which case we deduce

(X'Ix)=0 (2.293)

showing that the eigenstates of a Hermitian operator corresponding to two different eigen-
values are always orthogonal.

2.2.16 Obtaining Eigenvectors and Eigenvalues

The methods that one takes to actually solve the eigenvalue problem depend to some
extent upon the size of the space that one is working in. For finite dimensional spaces the
problem is reduced to a standard one of linear algebra. We seek nontrivial solutions to
the eigenvalue equation

Alx) = alo), (2.204)

which means, generally speaking, the two step process of finding the eigenvalues a for
which acceptable solutions exist, and then finding the associated eigenvectors. Note first
that the null vector is always a solution to the eigenvalue equation for any value of a,
but is of no interest since it does not represent a true dynamical state of the system, and
so is referred to as a trivial solution. Thus, we seek nontrivial eigenvectors of nonzero
length. To this end we rewrite the eigenvalue equation in the form

(A—a)lx) =0 (2.295)

where a = al is a scalar multiplicative operator that multiplies all vectors by the scalar
a. We now rewrite this a second time, in the form

Blx) =0 (2.296)

where the operator
B=B(a)=A—-a (2.297)

is an operator function of the parameter a. Now, if the inverse of B existed, the solution
to this equation could be obtained by multiplying both sides by B~':

Ix) =B 'Blx)=B"'0=0 (2.298)

This shows that if B~! exists, the only solution is the trivial one. It follows that for
those values of a for which nontrivial solutions exist, the operator B(a) cannot possess
an inverse. Since the inverse of B will exist unless the determinant of B vanishes, we
conclude that the eigenvalues of A are those values which make det(B) = 0. Thus, we
identify the eigenvalues of A with the roots of the characteristic or secular equation

det(A — a) = 0. (2.299)

Since the determinant of an operator is representation independent, so will be the eigen-
values. Thus, the spectrum of an operator is representation independent, i.e., invariant
under unitary transformations, and any representation can be used to evaluate the de-
terminant. In a vector space of dimension N, the operator A will be represented by an
N x N matrix A, and the characteristic equation will involve a polynomial of degree NV

A —a Aqo T Ain
Ayy Ay —a --- Agn N
det(A—al) = . . ) ] =c¢p+cia+---+ceya” =0 (2.300)

AN An2 -+ Ann—a
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in the variable a, referred to as the characteristic polynomial. The fundamental theo-
rem of algebra guarantees that any such polynomial will have, including possible multiplic-
ities, exactly N roots (which will generally be complex numbers). Thus, the characteristic
polynomial can generally be factored into the form

det(A—al)=(a—a1)"(a—a2)™ - (a—ay,)"™ =0 (2.301)

where aq,az, - - - an, represent the m < N distinct roots, which are assumed to have mul-
tiplicities ny, ng, - - - N4y, such that

> ni=N. (2.302)

Once the eigenvalues are found by solving the characteristic equation, the eigenvectors
are generally found one at a time by substituting the eigenvalues back into the eigenvalue
equation and solving the linear system of equations obtained by expressing the eigenvectors
and operators in any convenient representation. Thus, if the states {|¢) } represent an ONB
for the space, the eigenvalue equation (A —al)|x) can be written

D (Aij —adiy)x; =0 i=1,2,---N, (2.303)
J
in terms of the matrix elements of the operator A in this representation and the coefficients
x; of the expansion for the eigenvector

IxX) = ZXM (2.304)

of interest. Note that while this procedure gives a set of N linear equation in N unknowns
which we can solve using standard techniques of linear algebra, the N equations are not
linearly independent. This follows from the fact that the matrix of coefficients has a
vanishing determinant. Indeed, we chose the eigenvalue a to make this determinant vanish.
The point here is that the solution to these linear equations is not unique. Generally, we
will find that the equations allow us to determine all of the coefficients in terms of one
undetermined coefficient, which can then take any value. But this is equivalent to the
observation that a scalar multiple of any eigenvector is also an eigenvector. Indeed, it is
this freedom that allows us to produce a set of square-normalized eigenvectors.

We now assert some basic properties of linear algebra without proof. First we define the
concept of a normal operator. An operator is said to be normal if it commutes with its
adjoint. Thus, if

[A,AT] =0 (2.305)

then A is normal. It follows that Hermitian operators and unitary operators are normal. It
can be shown, that in a finite dimensional vector space the number of linearly independent
eigenvectors of a normal operator is always equal to the dimension of the space, and that
the multiplicity of any root in the characteristic equation is equal to the degeneracy of
that eigenvalue. Thus, the eigenvectors of a normal operator form a basis for the space.
Combining this with the orthogonality of the eigenvectors of Hermitian operators, we
deduce an important fact: In any finite dimensional space a Hermitian operator possesses
an orthonormal basis of eigenvectors.

In an orthonormal basis composed of its own eigenstates, an operator is clearly diagonal,
since (a;|Al|a;) = a;6;;, hence

A= Z lag)a;(a;]. (2.306)
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It follows that the trace of any normal operator is just the sum
Tr(A) =) a (2.307)

of its eigenvalues (each eigenvalue being included in the sum n; times), while the deter-
minant of any normal operator is just the product

det (A) =[] a (2.308)

(including degeneracies) of its eigenvalues.

Extended Example: Consider a three dimensional vector space. Let the states {|1),]2),|3)}
form an orthonormal basis for this space. Let A be an operator on the space having the
following four nonzero matrix elements (1|A[2) = (2|A|1) = (2|A|3) = (3|A|2) = /2, with
all other matrix elements being equal to zero. In this representation, an arbitrary state
) = Z?Zl ;i) can be represented by a column vector with components ¢; and the
operator A can be represented by the matrix

0 V2 0
A= V2 0 V2
0 V2 0

When A acts on |¢) it produces a state |¢) which can be represented by the column vector

¢ 0 V20 ¥y V2,
o = V2 0 V2 Yy = \/51/11 + \/§¢3
(o 0 V2 0 g V2¢,

To find the eigenvalues of A we find the roots of the characteristic equation

—a V2 0
det(A—a)=| V2 —a V2 |=0.
0 V2 —a

Evaluating the determinant yields the condition a(a? —4) = 0, which has three distinct

roots. a; = —2, ag = 0, ag = +2. Thus, we can write spectrum(4) = {—2,0,2}. Let
us denote the eigenvectors of A by {|a1),|az),|as)}. To find |a1) we substitute into the
eigenvalue equation (A — aj)|a;) = (A + 2)|a;) = 0, which in this representation can be
written

2 V2 0 ary 2a11 + V2a12

V2 2 V2 a2 | =0=1{ v2a1; +2a12 +v2a13

0 V2 2 a3 V2ais + 2a13
From the first and last components of the column vector on the right we find that a9 =
—\/§a11 = —+/2a13. [Note that we can always ignore the equation from one of the
components: it will just give us redundant information because det(4A — a;) = 0]. Thus
the column vector with components {1, —v/2, 1} is an eigenvector with eigenvalue a; = —2,

but is not normalized. To normalize, we divide by the length to obtain the column vector

1/2
o) — | —1/v2
1/2
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representing the state |a1). This means that
1
jar) = 5 (1) = v22) +13))

is an eigenvector of A with eigenvalue a1. By repeating this process for as and ag we find
after a little work that
1 1
=— (-3 :—(1 212 3).
|az) \/Q(H 13)) jaz) = 5 (1) +V2]2) +13)

Since A is obviously Hermitian, these states are orthonormal, as is readily verified by
computing the inner products. Since they are orthonormal, they also form a basis for the
space. It readily verified that the original basis states can be rewritten in this new set as
follows

1) =5 (lo) + V3an) +las)) 2= o= (“lan) +las) 13 =3 (lar) V2 + )
V2 2

The coefficients in these expansions are just the inner products of the new basis vectors

with the old. The unitary matrices which transform between these two sets of orthonormal

basis vectors are obtained by arranging in columns the coefficients expressing each set of

vectors of one basis in terms of the other, i.e.,

/2 —1/v2 1/2 1/2 1/vV2 12
ut=11/vV2 0 ~1/V2 U=| -1/V2 0 1/V2
/2 1/V/2  1/2 1/2 ~1/v2 1/2

It is readily verified that the product of U and U yields the 3 x 3 identity matrix. The
matrix A’ representing the operator A in the basis {|a;)} of its eigenstates is obtained by
transforming the matrix A using these unitary matrices, i.e., A’ = UT AU. We find that

/2 —1/V2 1/2 0 V2 0 1/2 1/V/2  1/2
A= 1/V/2 0 —1/V/2 V2 00 V2 ~1/v2 0 1/v/2
/2 1/V/2  1/2 0 V2 0 1/2 ~1/v/2 1/2

or
-2 0 0

A’ = 0 00

0 0 2

which is as we expect: In the basis of its own eigenstates, A is diagonal and the diagonal

elements are just the associated eigenvalues. We can see that Tr(A) = 0 = det(A), the
latter of which implies that this operator has no inverse.

Extension to Infinite Dimensional Spaces

The extension of these ideas to infinite dimensional spaces is often non-trivial. There
is the obvious problem of taking the determinant of an infinite-dimensional matrix, but
additional complications can also get in the way. Omne problem is that in contrast to
what happens in finite dimensional spaces, it is not always true that the eigenvectors of
a Hermitian operator span the space. Indeed, it is not all that unusual for a Hermitian
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operator to have no eigenvectors in the space at all. An example should help to make
this clear. Consider the space L?(R™) of square-integrable functions on R", which is a
subspace of the larger set of Fourier transformable functions. The position operator Ris
Hermitian in this space, since for any two square-integrable functions ¢(7) and ¢ (7) we
have

(6 i) / @B ¢ (7) 7 () = (G R])

[ / By (7) 7 ()" = (| Blg)". (2.300)

But the eigenstates of the position operator are represented by the wave functions
O (1) = (F|7) = 6(7 — ") (2.310)

which are not square integrable, since
/d3r 5 (7 b (7) = /d% 57— 7)S(F — ) = (7 — ) = . (2311)

Thus, the Hermitian operator R has no eigenfunctions in the space of square integrable
functions. Neither does the wavevector operator K. Tt is for this reason that we have cho-
sen the space in which we are working to be the space of Fourier transformable functions
(which includes the delta functions and plane waves). This does not entirely dispose of
the problem, but it does allow us to confront it less frequently. It has become common
to essentially define the problem away by mathematically introducing the concept of an
observable. A Hermitian operator is said to be an observable for a space S if it possesses
a complete orthonormal basis of eigenvectors for the space. This mathematical definition
makes close physical contact with our earlier intuition involving the principle of spectral
decomposition. As examples of observables, we have in the space of Fourier transformable
functions the operators X,Y, Z, R, and V(}_f)7 which are all diagonal in the position repre-
sentation, and the operators K, K, K, I_(', ﬁ,and T = h?K?/2m which are all diagonal
in the wavevector representation.

In many cases the solution to the eigenvector problem in infinite dimensional
spaces takes the form of an integro-differential equation. To see how this arises, consider,
for a single particle, the Hamiltonian operator

P2
H=—+V 2.312
o T (2.312)

the first term of which is diagonal in the wavevector representation, the second term V =
V(R) is diagonal in the position representation. The operator H, however, is generally
not diagonal in either. To find solutions to the eigenvalue equation

H|p) = E|¢) (2.313)

we choose a representation in which to express them.

Position Representation - In the position representation, the eigenvector

) = /d3r o(7)|7) (2.314)

is represented by the eigenfunction ¢(). In this representation, the kinetic energy is a
differential operator, while the potential energy is a multiplicative operator. Projecting
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the eigenvalue equation onto a basis vector of the position representation we find that

P2
(FHIG) = (6) + (71VI9)
= V0 + V() = Blile) = Bo(r). (2.315)

Thus, we recover the energy eigenvalue equation

I V205 + V() = Bol) (2316)

as it arises in Schrodinger’s mechanics. The eigenvalues of H are then identified with those
solutions which lie within the relevant space, which in our case, is the space of Fourier
transformable functions. Thus, for example, in the limit that V' = 0, this leads us to the
plane waves, but it excludes exponentials of the form ¢(7) = exp(a - 7), which for real
vectors @ would diverge exponentially and not be Fourier transformable. Thus negative
energies are excluded from the free particle spectrum.

Wavevector Representation - To find the form that the eigenvector equation takes in the
wavevector representation, we project onto a basis vector of this representation. Thus, we
consider

- . p2? .
(k| H|¢) = (KI5 1) + (k|V]). (2.317)
In this representation, P? is a multiplicative operator
- P? thQ
(k|5 ~1¢) = 5 —d(k k) (2.318)

while the potential energy term can be written

(kIV|¢)

/ B FVIRY ()
_ / B V(R T (F). (2.319)

Combining this with the result (k|E|¢) = Ed(k), the eigenvalue equation in the wavevec-
tor representation takes the form of an integral equation

h2k2¢( k) + /d3k’ V(E,F)p(K') = Ed(F). (2.320)

As before, the eigenvalues are determined by the requirement that the solutions to this
equation be in the space of interest. The question remains as to the form of the kernel
V(k K ) representing the potential energy in the k- representation. Inserting a decompo-
sition of V' in the r-representation in which it is diagonal we find that

V(k,F) (kIVIK') = /dST CAEGIGES

_ /% V() e FFIT Z (R~ ), (2.321)

where V(q) is the Fourier transform of V(7).
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2.2.17 Common Eigenstates of Commuting Observables

Consider two observables A and B. Each observable possesses a complete ONB of eigen-
states, but the eigenstates of Aneed have no relation to the eigenstates of B. Suppose,
however, that the two observables commute with one another, so that [4,B] = 0, or
AB = BA, and let |a) be an eigenstate of A so that

Ala) = ala). (2.322)
The action of A on the state B|a) is then easily determined, i.e.,
A(B|a)) = AB|a) = BAl|a) = Bala) = a(B|a)) (2.323)

or more simply,
A(Bla)) = a(Bla)). (2.324)

From which we see that Bla) is also an eigenstate of A with the same eigenvalue as the
state |a). This leaves two possibilities.

(i) If a is nondegenerate, then there is at most one linearly-independent eigenvector with
this eigenvalue. This means that the states |a) and Bla) are linearly dependent, which
for two vectors means that one is a scalar multiple of the other. Hence, there must exist
a scalar b, say, such that

Bla) = bla). (2.325)

But this shows that if a is nondegenerate, and [A, B] = 0, then |a) is also an eigenvector
of B. In this circumstance, we can label the state by the (real) eigenvalues a and b, and
write |a) = |a,b). A nondegenerate eigenvector of an observable A is also an eigenvector
of any observable that commutes with A.

(i1) If a is degenerate, with degeneracy n,, then all we can say is that both |a) and Bla)
are elements of the same n, dimensional eigensubspace S, of the operator A. But this
implies that an operator B which commutes with A takes vectors in S, only onto other
vectors in S,. This is described by saying that S, is globally-invariant under the action
of B. Recall that eigenvectors of A with different eigenvalues are orthogonal to each other.
This implies that if |a’) is an eigenvector of A with eigenvalue a’ # a, then

(a’la) =0 (2.326)

and that
(a'|Bla) = 0. (2.327)

Thus, if B commutes with A its matrix elements cannot connect states in different eigen-
subspaces. It is useful to see what all this looks like. In a basis of eigenstates of the
operator A, the operator A itself is represented by a diagonal matrix whose diagonal el-
ements are the eigenvalues of A. In one such basis, e.g., A may be represented by the
matrix

ai
a1
ai
az

A (2.328)
as
as

as
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where we have only shown the nonzero elements, and where, e.g., the eigenvalue a; is
threefold degenerate, and so on. Each diagonal string of the same eigenvalue is associated
with the associated eigensubspace of that dimension. In this basis, the operator B only
connects sites within each subspace. Thus, in this representation, B must be represented
by a matrix which is of block diagonal form

[ Bi1 B2 Bis
Bsy Bas Bog
B3y Bss Bss
By, Bym
B S (2.329)
B7n4 B7nm

in which each block associated with the eigensubspaces of A have nonzero matrix elements,
which are arbitrary (except for the restriction that the diagonal subblocks be represented
by Hermitian submatrices), while the matrix elements outside these blocks are all zero.

Given this block diagonal form, however, we can now form linear combinations of the basis
vectors in each eigensubspace to find new basis vectors for each eigensubspace without
affecting what happens in the other eigenspaces. This means that we can choose the
basis vectors in each eigenspace so that they diagonalize the submatrix representing the
operator B in that eigensubspace. If we do this for each eigensubspace we generate a new
basis of eigenvectors of A in which the matrix representing the operator A will be the
same as in the original, but the matrix representing the operator B will be represented
by a diagonal matrix

C by -

(2.330)

Thus, it is always possible to find a simultaneous ONB {|a, b, 7)} of eigenstates associated
with any two commuting observables. (We write the basis in this form, recognizing that
there may be more than one linearly-independent basis vector labeled by the same pair
of eigenvalues a and b. The index 7 distinguishes between such otherwise identically-
labeled basis vectors.) Thus, even when the eigenvalues of two commuting operators are
degenerate, it always possible to find a complete orthonormal basis of eigenstates common
to both.

Let us consider an example intended to make these ideas a bit more concrete . The parity
operator II in one dimension is defined through its action on the position eigenstates |z)
as follows

Ix) = |-z). (2.331)
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Thus II takes a particle located at = and moves it to —x. Equivalently, it reflects the
particle through the origin, and it is straightforward to deduce that in the = representation
Myp(x) = p(—=x). It is then a straightforward exercise to show that this definition leads
to a similar action

mk>:/ e nm:n/ — |—x>:/ e ) = ) (2:352)

on the eigenstates of the wavevector operator, i.e., II|k) = |- k). Thus, the parity operator
also can be viewed as reversing the direction of motion of a particle. Consider, now, a
particle moving in a symmetric potential V(x). The total energy of such a particle is
associated with the Hamiltonian operator

2702
H:T+V:hK

+V. (2.333)

It is readily verified that I commutes with the kinetic energy operator, by considering
the action of TIT and TTI on the states |k), i.e

h2 k2 h2 k2

OT|k) — THlk) = M—o—k) = T|-k) = 5 [|-k) = |- k)] = (2.334)

If V is symmetric about the origin, then II also commutes with V, since in the x
representation

[ILV](x) = TV (x)p(x) = V(e)Ty(z)
= V(=2)p(=2z) = V(z)d(= )
= V(z)y(—z) - V(o)yp(—=z) = (2.335)

Thus the Hamiltonian of a particle moving in a symmetric potential commutes with the
parity operator, i.e., [H,II] = 0. It follows that it is always possible to find a basis of
energy eigenstates for this potential that are also states of good parity, i.e., that are
simultaneously eigenstates of the parity operator. On the other hand, an eigenstate of H
will necessarily be an eigenstate of Il only if it corresponds to a nondegenerate eigenvalue.

(4

Getting back to our general development, we have shown that it is possible to find a
simultaneous basis {|a,b,T)} of eigenstates of two operators A and B whenever they
commute. When there are more than one linearly-independent basis vector |a, b, 7) labeled
by the same pair of eigenvalues a and b, it may be possible to find a third operator C
which commutes with both A and B which we can diagonalize within each simultaneous
eigensubspace Sy of A and B to further lift the degeneracy. This process can then be
repeated until each basis vector is labeled by a unique set of eigenvalues associated with
the mutually commuting operators introduced in order to distinguish each basis vector
from the others.

A set {A, B,C} of mutually commuting observables is said to form a complete set of
commuting observables (CSCO) for a space if it possess a complete ONB of simulta-
neous eigenvectors {|a, b, c)} for the space, each element of which is uniquely determined
by the eigenvalues (a,b, c) which label it.

For example, the operators {X,Y,; Z} form a CSCO for the space of a single spinless
particle in 3D, since there exists a complete set of basis vectors {|7)} = {|z,y,2)} each
of which are uniquely identified by the eigenvalues x,y, and z which label it. For similar
reasons the operators { K, Ky, K.} form a CSCO, with associated basis vectors {|E>} =
{lkz,ky,k2)}. It turns out that the one can mix and match Cartesian components of
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position and momentum to arrive at other CSCO’s, provided that one does not include
corresponding components of position and momentum along the same direction in space.
Examples include sets of operators such as { X, K, Z},{K,, Ky, Z}, and {K,,Y, Z}. The
first of these, {X, K, Z}, has a set of basis vectors of the form {|z, ky, 2) } corresponding
to a particle whose position in the xz plane is known, but whose y coordinate is unknown,
and whose motion along the y direction is characterized by wavevector k, (i.e., whose
momentum along the y axis is p, = hk,). The set of operators {K,, X, Z} do not form a
CSCO since they do not mutually commute.

Having discussed the means of specifying the dynamical state of the system, and having
described the basic properties associated with the observables of such a system, we now
turn to the question of what happens when we actually go to perform a measurement.

2.3 Postulate III: The Measurement of Quantum Mechanical Systems

Postulate III(a) - (Values obtained during measurement) The only value
which can be obtained as a result of an attempt to measure an observable
A of a quantum mechanical system in a normalized state |¢) is one of the
eigenvalues in the spectrum of the Hermitian operator A associated with it.
Exactly which eigenvalue will be measured cannot generally be predicted. It is
possible, however, to predict the probability for obtaining each eigenvalue. We
consider separately the cases in which the eigenvalue obtained is (i) discrete
and (ii) continuous.

i) The probability P(a) that a measurement will yield one of the discrete
eigenvalues a of A can be written

P(a) = (Y| Puv), (2.336)

where

Ng
P.=Yla,7){a,| (2.337)
T7=1
is the projector onto the eigensubspace S, of the observable A associated with
that eigenvalue. In this last expression the vectors {|a, 7) } are the orthonormal
basis vectors of A associated with eigenvalue a, and so the operator P, is the
sum of the orthogonal projectors for each such basis vector.

i1) The probability density p(«) that a measurement will yield one of the
continuous eigenvalue o of A can be written

plar) = (Y]pa 1), (2.338)

where

N

o= la,7)(a,T]. (2.339)
T=1

In this expression, the vectors {|a,7)} are the orthonormal basis vectors
of A associated with the continuous eigenvalue o. These basis vectors, by
assumption, are labeled by the continuous index «. They are not square-
normalizable. They obey some form of Dirac normalization condition, e.g.,
(a, T|e/, 7"y = 6(av — &')67 ,++ and so are of infinite length. Thus, the operator
P, 1S not a projection operator, but a projector density. As we have seen in
Sec. 2.2.5, the integral of p, over any region of the allowed values of a does
give a projector.
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In writing the expression above, it is important to point out that we have assumed that
the state |t)) is square-normalized to unity; otherwise this expression just gives the relative
probability of obtaining that value. Note that, in the discrete case, if the eigenvalue a is
nondegenerate, so that there is only one linearly independent basis eigenvector |a), then
the projector P, = |a)(a| onto the subspace S, is just the projector onto this one state. In
this limit, our expression for the probability P(a) reduces to the one we obtained within
Schrodinger’s postulates, namely,

P(a) = (¥la)(alp) = i, = [¢, [, (2.340)

where 1), is the associated expansion coefficient for the state |1} in the basis of eigenstates
of A. Thus, the probability reduces to the squared modulus of the associated amplitude,
exactly as in Schrodinger’s mechanics, except that we are now using ¥, to denote the
expansion coefficient rather than c,. Similarly if the continuous eigenvalue « of A is
nondegenerate, then the expression for the probability density reduces to

p(a) = (¥la)(alp) = ™ (a)p(a) = [t(a)|?. (2.341)

Thus, for a single particle, the identification of p(7) = [4(7)|? = (¥|)(F|¥) as the proba-
bility density to find the particle at 7 follows from the above prescription apphed to a mea-
surement of the position operator K. Similarly, we have the identification of p(k ) |(k )|2
for the probability density associated with measurements of wavevector or momentum.

For degenerate eigenvalues, the form that the probability takes actually depends upon
whether the different linearly-independent basis vectors associated with the same eigen-
value are discretely or continuously indexed. For a discretely-indexed set the probability
can be written using the result stated as above, i.e.,

P(a) = (| Palth) = wam (a,T|9) = Zm

T7=1

(2.342)

which is similar to the nondegenerate case except that now we must sum over each basis
vector of the associated eigensubspace. Similarly, in if the basis vectors associated with
the continuous eigenvalue a are discretely-indexed, the probability density p(«) can be
written

pla) = (Ulpalt) = D (Wla, 7){a, TI4) = de =Y (P (2:343)

(recall our convention that discretely-indexed components are distinguished from one an-
other with a subscript, while continuously-indexed ones use parentheses).

By contrast, if the basis vectors for an eigensubspace S, associated with an eigenvalue a
are continuously-indexed, then the sum over 7 must be replaced by an integral over the
continuous index, i.e.

P, = /dT |a, T){a, 7| (2.344)

so that

P(a) = / dr(la, 7 {a, 7)) = / drlv, (1)]2. (2.345)

The corresponding expressions for the probability density p(«) to obtain a continuous
eigenvalue « in a basis of continuously-indexed eigenvectors associated with that eigen-
value is

Pa = /dT loe, T) (v, 7| (2.346)
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and

mwzjwwmﬂmww:/wW@ﬂﬁ (2.347)

To make this a little more concrete, consider as an example a measurement of
just the x coordinate of a particle moving in three dimensions. The position eigenstates
|7 = |z,y, z) form a basis of eigenstates of the operator X, but are not completely labeled
by the associated (continuous) eigenvalue x. Indeed, there are a continuous infinity of
states having the same value of =, but different values of y and 2. Thus ,in this example
the continuous index 7 is actually a vector in R? denoting the coordinates (y, z) in the yz
plane. Hence, in this example, the projector density associated with the value z is

P :/dydz |, y, 2)(x,y, 2| (2.348)

where the integral is over all points in the yz plane. The associated probability density
that a measurement of X will yield the value z is

p@:/@MWW%MmmM:/@WWWMMM%@:/@WM?
(2.349)

In our formal development, since the only difference between these expressions is to replace
a sum over 7 by an integral we will, in what follows, adopt the practice of using the
summation over 7 to stand for either a summation or integration depending on whether
the degeneracy of the state is discrete or continuous.

An important part of the traditional interpretation of the measurement process is that
the value of an observable A is really not defined unless the system is in an eigenstate
associated with that observable. If it is in such an eigenstate, let us call it |¢,), then it
lies entirely within the associated eigensubspace S,. The act of a projector P, on such a
state will be to annihilate the state if a # a’, and to leave it alone if a = a’. Thus, under
such circumstances, it is clear that

Pla) = 1
Pd) = 0 for a’ #a (2.350)

Hence the probability of obtaining the eigenvalue a associated with such a state is equal
to unity, which is operationally the only time that the value of the associated observable
is well defined.

We now need to address the second part of the measurement postulate which describes
what happens to a quantum mechanical system as a result of the measurement process. We
assert that in an ¢deal measurement, which is one which perturbs the system the least, the
state of the system immediately after the measurement is one that (1) is consistent with
the particular eigenvalue obtained as a result of the measurement process, and (2) retains
as much information about the state of the system immediately before the measurement
as is consistent with (1). These ideas form the basis for the following:

Postulate ITI(b) (Collapse of the State Vector) - Immediately after a mea-
surement of an observable A performed on a system in the state |¢) that yields
the value a, the state of the system is the normalized projection of |¢) onto the
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eigensubspace S, associated with the eigenvalue measured, i.e., it is just that
part of |1} lying within the subspace. We schematically indicate this change
in the state vector as follows:

A
VRN 10
W TR (2351

Thus, simply speaking, nature throws away those parts of the state vector which are not
consistent with the actual value obtained. It should be noted that this only indicates
one possible branch of the evolution of the system during the course of the measurement
process, namely, that one which occurs when the particular eigenvalue a is obtained. As
we have seen, it is not possible to predict which of these branches will actually be followed
by any single quantum mechanical system. Thus, this change in the state vector during
measurement is inherently non-deterministic.

The viewpoint usually taken is that the collapse of the state vector to the associated
eigensubspace occurs as the result of an unspecified interaction of the system with the
(classical) measurement device used to measure the observable. We will avoid the many
interesting questions and apparent paradoxes which arise in the attempt to simultane-
ously treat the system-plus-measuring-device as a closed quantum system, as well as any
discussion of whether the collapse of the state vector is a “physical” process or a statistical
one. We will however make a few practical observations.

First, it is easy to show that the normalization factor ||P,|v)|| which appears in the
denominator of the reduced state vector is simply related to the probability that system
would have taken that particular route during the measurement process, i.e.,

||Pa|"/}>|| = \/<’¢]|Papa|"/}> = \/<¢‘Pa|"/}> = \/P(CL), (2352)

where we have used the characteristic feature P? = P, associated with projection oper-
ators along with the fact that a projection operator is Hermitian. Thus, we can express
the reduction process in the form

A
) e, Tal¥) (2.353)

a (] Paltp)

Viewed from the other direction, this shows that the probability P(a) is just the squared
norm of that part of |¢)) lying within the eigensubspace.

Secondly, we should note that if a is nondegenerate, then P, = |a){a|, and

Pa‘¢> _ |a><a|"/)> _ ei(/)‘a>

= (2.354)
[Pal0)]] [{alt)]
where all that is left of the original state is the phase information contained in the factor
id <a|1/1> (
e'? = 2.355)
[{al¥)]

which is a complex number of unit modulus ’ei"” =1, since we have divided the complex
number (a|y)) = |{a|th)| e!® by its magnitude. It should be noted that all expectation
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values of the states e!?|a) and |a) are identical, and hence they are not physically distinct
states. Thus, in the nondegenerate case the system is just left in the eigenstate associated
with that eigenvalue.

Extension to Continuous Spectra - If the spectrum of A is continuous, a measurement
of A with infinite precision would leave the system in an associated eigenvector, such that

A
S T PR AR (2:356)

which is similar to the previous result except the projector has been replaced by the
projector density. In the case of a nondegenerate spectrum this would imply the reduction

A
D el e
) ; el |av). (2.357)

This, of course leads to an apparent problem: if « is in the continuous part of the spectrum,
then the basis vector |a) is not square normalizable. Thus, even if |¢)) is square normalized,
the state of the system immediately after the measurement is not square-normalizable,
and hence would be considered “unphysical”. One might imagine that this could lead
to a real conceptual problem, since we are often interested in making measurements of
operators with continuous spectra, such as R and ]3, which in the classical theory are
the primary dynamical observables. In fact, the difficulty is really only mathematical,
since it arises as a practical problem only to the extent that we can actually perform a
measurement with infinite precision. In practice, such measurements never take place,
since there is always a finite resolution to the measuring apparatus, and any measurement
with finite precision always leaves the system in a physically acceptable state.

To see how the assumption of a measuring device with finite precision resolves the dif-
ficulty, consider a hypothetical device which would register a “click” (eigenvalue = 1) if
measurement of an observable A would yield a value in the interval I, = (o, o + Ax)
and would remain silent (eigenvalue = 0) otherwise. Here A« clearly represents the finite
precision of the device. An infinite string or collection of such devices centered on intervals
separated by an amount A« would then be a complete A-meter, since it would allow a
complete measurement of A with precision Aa. (When applied to the system, only one of
the elemental devices would click, telling us in which interval I,, the particle’s value was
located.) But in this circumstance, the observable actually measured by the one device
that clicks is not A, but is an operator P, that can be expanded in the « representation
in terms of its eigenvalues, 1 and 0, in the form

P, = / da’ |a Y1/ | + / da’ [a")0{d/|. (2.358)
o’'€ly a'¢la
Obviously we can drop the part proportional to zero and write
Py = / da’ o) (e, (2.359)
a’'€l,

But this is a projection operator, being an integral over a projector density. Thus, mea-
suring a “click”, tells us that the system has a value « in the associated interval, and
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projects the state of the system onto a normalizable state vector having its components
in this interval, i.e.,

P, =1
acr, P

Thus, any real measurement (i.e., one made with finite precision) leaves the system in a
normalized state vector. On the other hand, if the precision A«, although finite, is very
small compared to the variation of ¢ («) over this interval, we can still properly speak
of the probability density p(a) = [t)(a)[? of obtaining a particular eigenvalue, without
having to explicitly mention the actual precision of the device. Thus, in what follows we
will refer to measurements of position, momentum, kinetic energy, etc., without worrying
too much about the actual measuring apparatus.

) (2.360)

We now consider some consequences of the two parts of the measurement postulate.

2.3.1 Sum of Probabilities

First, we note that the probability of obtaining some value is guaranteed through the
mathematical structure of the theory, since

S P() = 30 (W, T {a, ) = (0] (Zi |a,f><a,r> ) = (W) =1, (2:361)

a 17=1 a 17=1

where we have identified the decomposition of unity implicit in the fact that the operator
A is an observable. It is this completeness property of course, which motivated our
mathematical definition of the term “observable” in the first place.

2.3.2 Mean Values

Given that the predictions of the postulates are statistical in nature, there are a number
of statistics of the measurement process which are useful to evaluate. Consider, e.g., an
ensemble of N identically prepared systems (with N > 1), all in the same quantum
mechanical state |¢). If the same observable A is measured on each member of this en-
semble, the result will be a collection of values {a} (all being eigenvalues of A). Each value
a will occur with a frequency f, = N P(a), related to the associated probability appearing
in the postulates. We can then compute the mean value (A) as the arithmetic average
associated with this series of measurements. This mean value, it should be emphasized,
may not actually coincide with any of the measurements actually performed, but it does
gives some information about the underlying distribution. To compute the mean value
we proceed as follows:

— %Zfaa => aP(a) ZZ Yla, 7){a, 7[1). (2.362)

a T=1

Note, however, that if we move the eigenvalue a between the elements of the projectors,
we can identify the resulting expression as an expansion for the operator A in the basis
consisting of its own eigenstates, i.e.,

Zi (Yla, T)ala, [Y) = (¥ (Zi]m a7’|> ) = (| Alp). (2.363)

a 1T=1 a T=1

Thus we obtain the very simple result that the mean value

(4) = (¥lAl) (2.364)
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is equivalent to the expectation value of the operator with respect to the given state. The
useful thing about this result is that we can compute it in any basis that we like: we
do not actually have to know the eigenstates and eigenvalues of an operator to compute
its expectation value. For example, for any ONB of states {|n)} for which we know
the expansion coefficients ,, = (n|y) for the state |¢)) and the matrix elements A, =
(n|Aln’) we can compute the expression

(A) = (WIAI) = W5 Apnr by, (2.365)

obtained by inserting decompositions if unity on each side of the operator A.

For reference, we list below some of the more common expectation values associated with
a single particle. In the position representation, we have

(R) = (0| R|p) = / &r (AT = / dBr (7 FY() = / (), (2.366)

V) = @VIg) = / Br WAV (7)) = / Br AV () = / & V(R p(7),

(2.367)
(K) = (Y|Ky) = /d?’r GI O —z'/d?’r DA VY(), (2.368)
(P) = (4| Plyp) = /d3r (|P)(F|P|) = —ih/dffr Y*(F)VY(F), (2.369)

2
(T) = <| |¢> 1/ r (Y|P (7 P2) = hm Er AV G, (2.370)

while in the wavevector representation
F) = [ @k WBERY) =i [ @50 BT, (2:371)
:/d3 /d3k’ (|RV RV kYK ) = /d3 /d3k’ kYW (k— k(K (2.372)

(P) = / k (|k)hE(E|p) = / A3k * (k) hkp (k) = / d3k bk p(k), (2.373)

2
1) =g [

IR = 2 [ @rur @) = 1 [ erian. @am)

2.8.3 Statistical Uncertainty

The mean value of an observable tells us roughly where we can expect the majority of the
values obtained in an ensemble of measurements to be clustered. It tells us nothing about
how big of a region around the mean value we might expect to obtain these values. It is
useful to have a measure of this statistical spread, which reflects the intrinsic quantum
mechanical uncertainty associated with the measurement process. One useful measure
of this dispersion is the root-mean-square uncertainty of a series of measurements,
defined through the relation

AA = /{(A—(A))?), (2.375)

which we can write in an equivalent and sometimes more useful form by expanding the

quadratic
(A= (A)?) = (A% - 2A4(4) + (4)?). (2.376)
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Since (A) is a constant, this reduces to
(A= (A)?) = (A%) — 2(A)? + (A)? = (A%) — (A)?, (2.377)

so that
AA=/(A2%) — (4)2. (2.378)

Note that if the system is in a normalized eigenstate |a) of A then
(A™) = (o] A"|a) = a™{a]a) = a", (2.379)

in which case
AA=+/a?—-a2 =0, (2.380)

so that there is no uncertainty when the system is in an eigenstate of the operator, as we
have repeatedly asserted.

Thus, in a statistical sense, the uncertainty in an observable associated with a given
quantum state |¢)) is a measure of the extent to which the state can be said to actually
possess a value of the associated observable. It is interesting, in this context, to ask about
the simultaneous possibility of reducing the uncertainty associated with two different
observables. We know, for example, that if B is an observable which commutes with A,
then it is possible to find simultaneous eigenstates |a,b) of both observables. For such a
state the uncertainty in both observables will vanish.

If, however, B is an operator which does not commute with A, then there need be no si-
multaneous eigenstates (although a few may exist, there will not generally exist a common
basis of eigenstates). Under these circumstances, it is not always possible to reduce the
simultaneous statistical uncertainty associated with the measurement of both observables
on a given quantum state. There turns out to be a precise statement which can be made
about the so-called uncertainty product

AAAB = (A~ (A)2)V((B — (B))?) (2.381)

associated with any given state of the system. This product is clearly a measure of the
joint uncertainty associated with these two observables. In particular, we prove below the
well-known uncertainty principle, the statement of which follows:

2.3.4 The Uncertainty Principle

For any quantum state |1), the joint uncertainty in the values of two observables A and
B as measured through the uncertainty product AAAB is bounded from below through
the relation

AAAB > %|<[A, Bl (2.382)

it being understood that all expectation values are to be taken with respect to the same
quantum state [1)).

To prove the uncertainty principle, we need first to prove a simple but useful theorem
known as Schwarz’s inequality, which states that if |x) and |y) are any two states in
the space, then (zz)(yly) > (z|y)(y|z) or, equivalently, [|z[[*[[y|[* > |(z|y)[?, or more
simply,

[yl = [(z|y)]- (2.383)
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To prove this relation, set |a) = |z) + A|y), for some constant A to be chosen later. It then
follows that the length of this vector is positive so that

(alo) = [(2] + X (y[][lz) + Aly)] > 0. (2.384)
Expanding, we find that
(z|z) + Mylz) + A" (ylz) + AN (yly) = 0. (2.385)

This statement is true for arbitrary A, so we can set

_ (zly) v« lylz)
A=) M=y (2.:386)
which leads to the result
~(zly)ylz)  (yle)(zly) | (zly) (y|z)
(wle) (yly) (yly) N (yly) (yly) Wiy = 0. (2.387)
This reduces to (el )
z|z)(Y|T
(z[z) — Ty >0 (2.388)
” (xly) (y]2)
(zlz) > Wl (2.389)
and hence
(z]x) (yly) > (z]y)(ylx), (2-390)

which proves Schwarz’s inequality.

We now are in a position to prove the uncertainty relation. First, we introduce shifted
operators

A=A—-(4) (2.391)
B=B-(A) (2.392)

which are just like the originals, except that they have zero mean value with respect to
the state |¢). These operators obey the following relationships, as is readily verified:

AA =/(A?) = AA (2.393)
AB =/(B?) = AB, (2.394)

and
[A,B] =[A, B], (2.395)

so that if we prove the uncertainty relation for the shifted operators A and BA we also
prove it for the unshifted operators A and B. Now set |z) = A|¢), and |y) = Bly) and
apply Schwarz’s inequality to find that

(V| A2) (0| B2 |v) > (W|AB|y) (| BA|p) = [(v|AB|p)|?. (2.396)

This is already a useful inequality, but to put it in the standard form, we can observe that
the quantity on the right is the squared modulus of the complex number (i|BA|y) and
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so is larger in magnitude than the square of just its imaginary part. The latter we can
obtain by taking one-half the difference of this number with its complex conjugate, i.e.,

(A, B)| (2.397)

(GIABI)| > [Tm{g ABJy)| = S|l ABl) - (w]BAl)| = 5|

Combining this with the result above and taking the square root we obtain

A2 2 Loa A
V{42 {B%) =2 5 {[A4, B]), (2.393)

which is equivalent to the statement of the uncertainty principle.

Perhaps the most common application of the uncertainty principle is to the Cartesian
components of the position and momentum operator along the same direction, for which
the canonical commutation relations [X;, P;] = thé;; and the result above imply that

AX;AP; > g (2.399)
or equivalently
AX;AK; > % (2.400)

In this form, the uncertainty relation shows that, past a certain point, we can increase our
knowledge of a particle’s position along a certain direction only if we are willing to put
up with a concomitant loss of information about its momentum along the same direction,
and vice versa. More generally, we can increase our knowledge of an operator A at the
expense of decreasing our knowledge of observables B with which A does not commute.
On the other hand, the uncertainty principle is also consistent with our observation that
there is no limit to the precision with which we may simultaneously specify the value of
commuting observables. Commuting observables are, therefore, often referred to as being
compatible observables.

2.3.5 Preparation of a State Using a CSCO

It follows from the last discussion and the statement of the second part of the measurement
postulate, that if a system is initially in an unknown state, it should be possible to
“collapse” it into a known state through a series of nearly instantaneous measurements
performed using the operators in a complete set of commuting observables {A, B, C'}.
Suppose, for example, the system is in the state |¢), which we may or may not know. This
state can be expanded in the basis vectors associated with the simultaneous eigenstates
of the operators A, B, and C' in the usual way, i.e.,

)= D Vel V). (2.401)

a’ b’ ¢’

If we now measure these three compatible observables in a very short interval of time, we
will see the subsequent reduction of the state vector onto one of these basis vectors, as
represented by the diagram

C Vabe

« —> e v
|/lr/}a,b,c
(2.402)

la, b, c).

A B
D= Z¢a’b,’c/|a,b/’c/> N Z¢a,b’c,|a,b, c)
a b <

’ ’
b ,c
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This conceptual ability to prepare a system in a well characterized state is extremely
important for the theory, for it allows us to test the statistical predictions of the theory,
which rely on the idea of an ensemble of similarly prepared systems upon which to perform
a subsequent measurement. Thus, after performing such a complete series of measure-
ments on an ensemble of arbitrary initial state vectors, we can extract those which end up
in a particular quantum state |a,b,c) to produce a subensemble of systems upon which
to perform further experiments.
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We are now ready to finish up the set of postulates that we have been developing to
describe the formalism of quantum mechanics. The last postulate describes the way a
quantum mechanical system behaves in between the times during which measurements
are being made. As we have seen, during a measurement process, a quantum mechanical
system, in contact with a classical measuring device, evolves non-deterministically as the
state vector collapses into one of the eigensubspaces of the particular observable being
measured. In between these measurement events, evolution is governed by the fourth
postulate.

2.4 Postulate IV : Evolution

Between measurements the state vector [1(t)) of a quantum system evolves
deterministically according to Schrédinger’s equation of motion

in S (0)) = HR (1), (2.403)

in which the Hamiltonian operator H is the observable associated with the
total energy of the system at time t.

In practice, to use Schrodinger’s equation we project it onto the basis vectors of an appro-
priate representation. Thus, if the vectors {|n)} form an ONB for the space of interest,
then we can write

(nlif (1)) = ml W6 (0). (2.404)

Sliding the bra (n| past the time derivative and inserting a complete set of states to the
right of the Hamiltonian, we obtain

ih% (nlu(t)) =Y (nlH|n'){n' [ (1)) (2.405)

in which we recognize coefficients for the expansion
[$(E) =Y [n)(nf() =D ¥u(t) [n). (2.406)
Thus, in this representation, Schrodinger’s equation takes the form

L dyy,
ih—t = ;Hm,wn, (t) (2.407)

of a set of first-order coupled differential equations for the time-dependent expansion
coefficients for the state |¢(t)) in this basis.

In a continuous representation |}, the state of the system is represented by the wave-
function (o) and the Hamiltonian becomes an integro-differential operator acting on this
function. In the most general case, the matrix elements of H between the continuous basis
states |«) are defined by some kernel H(a, o) = (a|H|o'). Projection of the Schrodinger
equation onto the basis states of that representation then leads to the expression

(ol (1)) = (ol H (1) (2.408)
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As before, taking the derivative with respect to time is a linear operation, so we can write

d d a,t
<a|iha\w(t)> = iha<a\w(t)> = zh% (2.409)
where the exact differential for the vector |1 (t)) (which only depends parametrically on
time, not on « or anything else) turns into a partial derivative when it acts on the function
Y(a,t) = (a|tp(t)), which is formally a function of two variables. Making this substitution
and inserting a complete set of states between H and (t) on the right we obtain an
integral equation

9
ma—f - / do! H(a, o Y(o, ¢). (2.410)

for the wave function ¥(«, t).

Under certain special situations (which occur rather often) the matrix elements of H
will involve derivatives of delta functions, and the integral equation will reduce to a
differential equation, as we have seen occur with the energy eigenvalue equation in the
position representation.

Thus, for a single particle in 3D moving under the influence of a potential V (7, t),
the Hamiltonian is simply the sum of the kinetic and potential energy operators

H = Gy + V(R,t). (2.411)

Under these circumstances, the Schrodinger equation can be written in the position rep-
resentation by projecting it onto the basis vectors of that representation, i.e.,

. d P2
ih— [9(1)) = H[Y(1)) = 5[ (t) + VIv(0)), (2.412)
S (F() = 5 (FPh6(0) + (VIS(), (2.413)
which we recognize as
zhﬁw(f t) = —h—zv%p(ﬁ t) + V(7 t)y(t) (2.414)
ot ' 2m ’ ’ ’ :

which is Schrodinger’s equation in its original form. Alternatively, we can choose to work
in the momentum or wavevector representation:

m%@‘w» - %@\PQW(W + (RIV[w(#), (2.415)

which we can write in the form

h? k?
2m

— —

Wk, t) + /d3k’ V(k—k' t)(k' ). (2.416)

9
ihg V(K1) =

Unless f/(lz — k' ,t) has special properties which enable a simplification, Schrodinger’s
equation for a single particle in the wavevector representation is an integrodifferential
equation.
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2.4.1 Construction of the Hamiltonian and Other Observables

In principle, the evolution of a quantum mechanical system is reduced to the solution
of a set of coupled first order differential equations once the Hamiltonian is known. As
in classical mechanics, therefore, the first step in solving the dynamical problem is the
construction of a suitable Hamiltonian. In many cases a Hamiltonian operator can be
obtained from the Hamiltonian function of an associated classical system. For the par-
adigmatic case of a single spinless particle moving in three dimensions, for example, we
move from the classical description, which is based upon the dynamical variables " and p,
to the quantum mechanical one, by replacing the dynamical variables by the Hermitian
operators R and ]3, whose components obey the canonical commutation relations

(Xi, X;] =[P, Pj] =0 (2.417)

[X;, P;] = ihs;;. (2.418)

In a similar fashion, it seems reasonable to associate with any classical observable A(7, p|t)
an operator A(]%, ]3,t) obtained by replacing the dynamical variables appearing in the
function with the corresponding operators. Unfortunately, while this procedure works a
good deal of the time, there are circumstances where it can give ambiguous results and/or
suffer the drawback that the operator which is produced is not Hermitian. To illustrate
the basic difficulties that arise, consider the following classical observable

TPy = Pz (2.419)

which we can write in either of these two ways, since classical variables always commute
with one another. Quantum mechanically, however, the operators obtained by replacing
the dynamical variables with associated operators

XP, # P, X (2.420)

are not equal because these operators do not commute. A moments reflection will reveal
that there are actually an infinite number of classically equivalent expressions that each
generate a different quantum mechanical operator (consider, e.g., "\/z"p” = xp,) Which
of these operators should be used to represent the classical observable? Most of them are
patently unusable because they are not Hermitian. In the simple example above, e.g.,
neither X P, or P, X is a Hermitian operator,

XP,]t =PfXt=P,X. (2.421)

and so cannot represent an observable.

To resolve this problem we use the idea of Hermitian symmetrization of an operator.
Recall that any operator A can be written in the form

A=Ay +Aq, (2.422)

where the operator Ay = $(A+ A¥) is Hermitian and A4 = $(A+ A™) is anti-Hermitian.
Thus, an arbitrary operator can be decomposed in a unique way into Hermitian and anti-
Hermitian parts in a way analogous to the manner in which an arbitrary complex number
can be decomposed into real and imaginary parts. We refer to Ap, therefore, as the
Hermitian part of A, and stipulate that the observable corresponding to any classical
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quantity be associated with the Hermitian part of the operator obtained through the
replacement discussed above, i.e.,

A(R,P,t)+ At (R,P,t)

A(7,pt) — 5 (2.423)
In the particular example considered, this implies that
1
TPy = Pat = 5 (X Py + P X) (2.424)

so that both of the operators in question are treated on an equal footing. An additional
example would be

- =

7-p— =(R-P+P-R). (2.425)

N =

Unfortunately, this procedure only reduces the underlying problem, it does not eliminate
it. This can be seen by considering the following equivalent classical expressions

2?py = pat”® = ap,, (2.426)

the first two of which are both associated under the above prescription with the operator

1
§(X2Pz + P X?), (2.427)

while the third of which is associated with the operator

XP,X. (2.428)

This difficulty is, in a sense, only mathematical, and presumably arises because we are
attempting to go from a less complete description (i.e., classical mechanics) to a more com-
plete description (i.e., quantum mechanics) of the physical universe. It is not unreasonable
to expect that in any domain where classical behavior is observed, the differences between
the predictions associated with any of these operators will become unimportant. In the
quantum domain, however, this underscores the fact that the association of a measuring
device with an observable can sometimes involve subtle distinctions.

It should also be pointed out that this problem really only arises in operators involving
products of non-commuting observables. In the most common situation, namely that of
a particles moving in response to a classical potential function V'(r,t), the problem never
arises because such products don’t appear in the Hamiltonian.

2.4.2 Some Features of Quantum Mechanical Evolution

Determinism - Note that the differential equation governing the evolution of the state
vector is first order in time. This means that the solution depends only on the initial
state of the system, and not, e.g., on its initial rate of change. Thus, any initial state
|t(to)) of the system at time ¢y will evolve into a single unique vector |¢(t)) at time ¢ > .
We note that this implicitly defines a mapping of the space onto itself, and thus implies
the existence of an operator U, or a family of operators U(t,to), that map an arbitrary
state at time £y onto the state into which it evolve in time ¢. This evolution operator
is defined through the relation

[(t)) = Ut to) [1(t0))- (2.429)
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Linearity - The linearity of the equations of motion imply a superposition principle for
the solutions of the Schrodinger equation. That is if [11(¢)) and [1)4(t)) are two possible
solutions to the Schrodinger equation (which have, e.g., evolved from two different initial
state vectors |11 (to)) and |15(%0))), then the time-dependent vector

[9()) = a1 () + By, (1)) (2.430)

is also a solution to the Schrédinger equation for any complex constants o and 3, since

(i (1)) + B (1) (2431)
iy (0) + BHI (1)) = Hlaly (1)) + By (1)), (2432)

. d
ih (1)

so that J
in0(0) = (). (2.433)

This implies, as a consequence, that if we find out how the basis vectors of any ONB evolve
under the Schrédinger equation, we can determine the evolution of any other vector in the
system. It also implies that the evolution operator U(t,tg) introduced above is a linear
operator.

Conservation of the Norm - It is also relatively easy to show that quantum mechanical
evolution preserves the norm of the state vector, a condition which is obviously important
if we wish the total sum of probabilities to be conserved. Thus, we consider the rate of
change of the (squared) length of a vector |1(t)) evolving under the Schrodinger equation

Sovelee) = wl (o) + () 19 (2.434)

where we have simply used the chain rule on the right hand side. From the Schrodinger
equation itself we deduce that

d i

—- ——_H 24

1) =~ H|y) (2.435)
the adjoint of which gives

d i

2Vl =5 (VIH. (2.436)

Substituting these in above we find that

(WIH|Y) + 3 (0] ) =0, (2437)

d )
EW\W =%

so that (¥(t)]¥(t)) = (¥(to)|¢(to)) is constant. This implies that the evolution operator
U =U(t,tg) that we defined earlier is unitary, since

(@O (t) = (V(to)[UT Ul (to)) = (1 (to) ¥ (to)). (2.438)

Since this must be true for arbitrary states |¢(tg)), it follows that UTU = 1. This feature
is also described by saying that the Schrédinger equation leads to a unitary evolution.
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2.4.8 FEvolution of Mean Values

Let us now consider how the mean value associated with an arbitrary observable A(t)
evolves in time. In general, operators can have an intrinsic time dependence. As an
example consider the potential associated with the application of a spatially uniform
sinusoidally-varying electric field, i.e.,

Veat(t) = —€E - R cos(wt). (2.439)
The mean value of this operator

(Vear (t)) = (00(8)[Vewr (8) (1)) (2.440)

evolves in time, since both the state and the operator itself is changing. At any instant of
time, this mean value gives a measure of the interaction of the system with the external
field. In general, the mean value of an arbitrary observable

(A1) = (@) AD)|L(2)) (2.441)

may have two sources of time dependence: a part due to the operator itself, and a part
due to the evolution of the system. We can, however, use the chain rule to write

d d
2 {A@) = 2 (YO AD)[V () (2.442)
d 0A d
= (00t) A + w1510 + wia (1) (2.413)
From our earlier manipulations this can be written
d i 0A i
7 A@) = 2 (WIHA) + () — 7 (VI AH]Y). (2.444)
0A i
=(5;) — 7 (VIAH — HAJY) (2.445)
in which we recognize the commutator of A and H. Thus, we have the equation of motion
d 0A i
7 A) = (1) — 5 (4, H]). (2.446)

This form may be familiar to the student of classical mechanics, in that it resembles the
equation of motion

dA  0A
o — (A H}e. (2.447)

for a classical observable A(q,p,t), where the bracketed quantity represents the Poisson
bracket of the two functions A(q,p,t) and H(q,p,t), defined through the relation

_\~09f9g 09 0f
{f,9} = Z B4 .~ e o (2.448)

As a consequence of this equation of motion, we note that any time-independent operator
that commutes with the Hamiltonian has a mean value that remains constant in time,
since the equation of motion then predicts that d(A(t))/dt = 0.
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2.4.4 Eherenfest’s Theorem

As an interesting application of the use of the equations of motion for the mean value of an
observable, consider the motion of a particle under the influence of a force F(7) = —VV (7)
derivable from a scalar potential V(7). Quantum mechanically, this corresponds to the
usual Hamiltonian
P? ~
H=—+V(R). (2.449)

2m

The classical dynamical variables #(t) and p(t) associated with such a Hamiltonian evolve
according to Hamilton’s equations
ar(t) _ p(t)

dp(t)
dt

which are equivalent to Newton’s second law. Let us now consider how the mean values
(R(t)) and (P(t)) associated with the corresponding quantum mechanical observables

= —VV(r(t)) = F(7(t)). (2.451)

change in time. First, we examine the equation of motion for the position operator ﬁ,
which being independent of time (OR/9t = 0) leads to the equation of motion

d = i
—(R(t)) = —= HI). 2.452
S(R() = — (17 1) (2.452)

This leads us to evaluate 1
[R,H] = —I[R, P*| + R, V]. (2.453)

Since V is a function of R, the second commutator vanishes. The x component of the
first commutator is

(X, P?] = [X, P2 + [X, P2+ [X, P?] = [X, P2, (2.454)

where we have recognized that the only non-commuting part involves position and mo-
mentum operators along the same direction. Using the standard trick for evaluating the
commutator of a product we find that

(X, P} = P,[X, P,] + [X, P,] P, = 2ihP,, (2.455)

and similarly for the other two cartesian components of the commutator in question. As
a vector operator relation, therefore, we have the result that

(R, P?] = 2ihP, (2.456)

which we can put back into the equation of motion for (E(t)) to obtain

| =

(R(0) = — 35— (2ihP) =

t m

d(R) P
— = — 2.4
5 () i
which, brackets aside, looks like its classical counterpart. Thus, as in classical mechanics
the mean velocity equals the mean momentum divided by the mass.

(P). (2.457)

3=

sy

Thus, we find that
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In a similar fashion we can compute the equation of motion for the mean momentum,

d

HP() = — ([P, H). (2.459)
which leads us to evaluate
[P,H| = ! — [P, P +[P,V]. (2.460)

2m

Now the kinetic energy term disappears, but the potential energy term does not, since
it is a function of the operator R which does not commute with P. Since we have not
specified the exact functional form of the potential energy function, it is convenient to
work in a representation in which V is diagonal, namely the position representation. In
the position representation we can write

(FI[P,V[p) = —ih[VV (R (r) — V(7)) V()] (2.461)
= —ih[p(r)VV (7)) + V(AVE(r) = V() V(R = —ih[VV (7)]y(r), (2.462)

so that in the position representation, []3, V] acts to multiply the wave function by the
function —iAVV () = ihF (), where F(7) is the classical force function. Thus, we make
the identification

[P,V] = ihF(R), (2.463)
where

F(R) = / & |7 B

is a vector observable associated with the force on the particle, i.e., the force operator.
Using this result in the equation of motion we find that

d 5 P
Z(P()) = =1 (hF(R)) = (F). (2.464)

Thus, the equations of motion for the position and momentum operators can be written

d(R) 5

—==(P), (2.465)
By —(F 2.466
g \F) = (F). (2.466)

which looks like Newton’s equations, aside from the taking of expectation values. These
classically familiar-looking expressions are referred to as Ehrenfest’s equations of mo-
tion for the mean values. Their interpretation requires a little care. It might be expected,
for example, that these equations imply that if the initial mean values were equal to those
of some hypothetical classical system with the same potential, so that (§(0)> = 7(0) and
(P(0)) = p(0), then as both systems evolved the mean values (R(t)) and (P(t)) for the
quantum particle would simply follow the corresponding classical trajectory #(¢) and p(t).
This is, however, not generally the case. To see this, we note that the classical equation
of motion

dp

o = F = F(#(t)), (2.467)
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equates the derivative of p’to the force function evaluated at the particle’s instantaneous
position. If the mean value (P) were to obey this same equation, it would have to satisfy
the following relation

d(P -

LS () (2.468)

which involves the force function F (7) evaluated at the mean value of the particle’s posi-
tion. But this is not the equation we derived, which contains <ﬁ (ﬁ)} on the right hand
side, not F((R)). Thus, the only situation in which the quantum mean values will follow
classical trajectories is when, for all instants of time,

—

F((R)) = (F(R)). (2.469)

In general, of course these are not the same. It is straightforward to show, however,
that if the potential function can be written as a polynomial of degree two or less in the
position of the particle, then this condition is satisfied. This means that the mean value
of position and momentum for a particle subject to no force, a constant force, or a linear
(e.g., Hooke’s law) force will always follow the corresponding classical trajectory.

2.4.5 FEvolution of Systems with Time Independent Hamiltonians

‘We now consider the evolution of quantum mechanical systems in which the Hamiltonian
operator is independent of time, so that 0H/0t = 0. Classically, in such a system the
total energy is conserved. Quantum mechanically, this implies that the mean value of the
energy will be conserved since, under these circumstances

d O0H i
7 \H®) = {—) — +(H H]) =0. (2.470)

It is important to realize, of course, that the energy of a quantum system is still generally
undefined unless the system is actually in an eigenstate of the energy operator. Thus, the
mean value only predicts the statistical outcome associated with many measurements of
energy performed on an ensemble of identically-prepared quantum mechanical systems.
Nonetheless, when the Hamiltonian is time independent, the evolution of the system is
most easily expressed in terms of the ONB of energy eigenstates. In the case of a discrete
system, we can express the energy eigenstates in terms of a discrete index n so that

H|n) = En|n), (2.471)

with
(nln') = bnm. (2.472)

Under such circumstances, the instantaneous dynamical state can be expanded in the

form
() =) (nlw(t) = v, (t)n). (2.473)

For a system with a continuous energy spectrum, the energy eigenstates can be indexed
by a continuous index, v, such that

Hv) = Ey|v), (2.474)

with
(v]p) = 8(v — '), (2.475)
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and

w(e) = [ v ) olte) = [ do vl (2.476)

In general, the Hamiltonian can have both a discrete and a continuous part to its spectrum,
with both discrete and continuously distributed eigenvectors {|n), |v)}, with

(n|n') = b (2.477)
(v[v') = 6(v =), (2.478)
(n|v) =0, (2.479)

and
9() = 3 I lw(e) + [ do o) wlw(e) = S vn(@)in) + [ dv (o0l (2480

In what follows, we will, for simplicity, write expressions in the form of a discrete index,
but corresponding expressions for the general case should be straightforward to generate.

If we project the Schrodinger equation onto the basis vectors of the energy operator, we
obtain

L dipy,(t)
ih—2= = Z Hyr (1), (2.481)

where, by assumption, Hy,y = (n|H|n') = E,(n|n') = E,6p, . Making this substitution
we find that the equations of motion in the energy representation

ih%q/}n = B, = hwnt),,, (2.482)

are uncoupled. In this last expression we have introduced the notation w,, = E,,/h. This
equation is readily manipulated into the integral

P (1) t
/ % = fiwn/ dt, (2.483)
¥, (to) Vn to

which gives ‘
U (£) =y, (tg)e om0, (2.484)
or if we wish to make tg = 0, ‘
U, (t) = ¥, (0)e ", (2.485)
so that

(1)) = 3 4, (0) e n) = 3", (tg) e 1) )

Thus, in the energy representation the coefficients which determine the state vector at
an initial instant of time each acquire a simple time-dependent phase factor that depends
upon the energy of the associated basis state.

If at ¢ = 0 the system is in a single energy eigenstate, so that

1(0)) = |n), (2.486)

then 1,,,(0) = é,,,,/. The system will then simply stay in that eigenstate, but will acquire
an oscillating phase factor, i.e.,

(1)) = e ! |n). (2.487)
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In such a simply evolving state all physical properties are static, or stationary. Con-
sider, e.g., any time-independent observable B, which may or may not commute with the
Hamiltonian. With the system initially in an energy eigenstate, the mean value of such
an observable will be

(B()) = (¢(8)| BIo()) = ¥ (n| Bln)e™ """ = (n|Bln) = (B(0)),  (2.488)

which is independent of time. For this reason, the energy eigenstates are referred to as
stationary states.

In general, of course, the system will be in a linear superposition of energy eigenstates of
different energies, and observables of the system will therefore evolve in time. Thus, an

initial state
= 9,(0)|n), (2.489)

will evolve into the state

Z ’l/) 7uu“

Once we know the expansion in the energy basis we can view the evolution in other
representations as well. Thus, e.g., the real space wave function ¥(7,t) for such a state
will evolve in a manner that depends upon the projection of the state vector onto one of
the basis states of the position representation, i.e.,

G0 = (1900 = (07 ) = D00, 0 T, (249

n). (2.490)

where ¢,,(¥) = (¥|n) are the energy eigenfunction in the position representation, and

$,(0) = (n|4(0)) = /d37’ (n|7)(71(0)) = /d3r G (PP (7, 0)

can be computed from the initial real space wavefunction. Thus, we obtain a natural
decomposition of 1(7,t) in the orthonormal functions ¢,,(7) associated with the energy
eigenstates.

In such a superposition state, the mean value of an observable will also evolve, as we have
seen. This evolution, whose equation of motion we have already explored can also be
expressed in the energy representation

(A@t)) = (v()|Alp(t) ZZ¢ Ay (1) (2.492)
DD UH(0) Appr ), (0) eFH@n )t (2.493)

in which we have inserted the expansion for |¢(¢)) and its adjoint
Bl = 3w (0) et ] (2.494)

From this expression it is easy to see that the mean value of all time-independent observ-

ables will have components which oscillate in time at the so-called Bohr frequencies of

the system,

En - L’
h )

which are simply related to the energy differences between the different eigenstates of H.

an’ =Wp —Wp' =

(2.495)
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2.4.6 The Evolution Operator

We finish up our formal discussion of the consequences of the evolution postulate by
discussing the explicit form of the unitary operator U(%,%y) which evolves the state vector
from an initial state at time ¢( to the state of the system at some time ¢ later. We treat
separately the case of a time-dependent and a time-independent Hamiltonian.

Time-Independent Hamiltonian -For the case in which H is independent of time it is
possible to explicitly construct the evolution operator by considering the expansion of the
evolving state vector in the energy basis. The evolution operator is defined through the
relation

[h(t)) = U(t,to)|¥(to)), (2.496)
while the equations of motion imply the expansion
(1) =D, (to)e En =)/ p), (2.497)
in which
¥n(to) = (n|t(to))- (2.498)

Making this substitution into the expansion and doing some judicious re-arranging of
terms, we find that

V(O = S nllo))e E 0 ) = 37 e E O mfy(ra)),  (2499)

n

in which we can, by comparison with the definition of the evolution operator, make the
identification

Ult,to) =Y [n)emFnl=to)/I (], (2.500)

Thus, the evolution operator is diagonal in the energy representation, and its diagonal
elements are a simple function of the associated eigenvalues of the energy operator. We
can therefore write the evolution operator as the corresponding function of the energy
operator itself, i.e.,

Ult, tg) = e~ Ht=to)/h (2.501)

In this form is clear that when H is independent of time the evolution operator U (¢,tq) =
U(t — tg) only depends on the length of the time interval over which the system is being
evolved. Thus, we can write U(t) = e *#¢/" as the operator which evolves the system
for a time t. We also note that in this form the evolution operator is explicitly unitary,
since for any Hermitian operator A, the adjoint of the operator U = e*4 is the operator
Ut =e 4 and so

UUT =UTU =4 =1, (2.502)

This form resembles another operator of this type, namely the spatial translation op-
erator

T(f) — o iLK _ efil_;-}_"/h’ (2.503)

which is a multiplicative operator in the momentum representation, but which in the
position representation has the effect of shifting the wave function through a displacement
E, ie., . .

T(L)yY(F) = (¥ — L). (2.504)
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Thus, if originally the peak of the wave function ¢ (7) was located at the origin (at ¥ = 0),
it will now be shifted to the point where the argument of ¥ (7 — E) is zero, i.e., to the
point 7 = L. To see how this comes about, consider the corresponding one-dimensional
version of this operator

(—iLK,)? n (—iLK,)?

T(L)=e "MK =14 (—iLK,) + o 30

+--- (2.505)
If we let this act on a state described by the wave function ¥ (z), and use the result
appropriate to the position representation that ik, = d/dz, we find that

d L? d? L3 d3
T(L =1-L—4—— ——=—
(L)) =1 dx * 2! dz2 3! dad
d L? d&? L3 d3y(z
-1 By P

de 2! dx 3! dx
where we see that the expansion of the exponential operator automatically generates the
Taylor series for the function 1(x — L) expanded about the point x. In terms of the basis
vectors of the position and momentum representation it is straightforward to show that

T(L)|#) = |7+ L) and that T(L)|k) = e 1LF|k).

Thus, by analogy, the evolution operator U(t) is sometimes referred to as the time-
translation operator. Translation operators for other observables are also easily defined
as operator exponentials of this type. If the variable being shifted is an angle, then the
“translation” is actually a rotation. The Hermitian operators which appear in exponents
of these translation operators are referred to as the generators of the associated trans-
lation. Thus, H is the generator of time translations, while P is the generator of spatial
translations. Through similar analyses, one can establish the fact that R is the generator
of translations in momentum, and that any component of the angular momentum operator
L generates rotations about that axis.

+ o Ju(x) (2.506)

+ -] =1z — L), (2.507)

Time-Dependent Hamiltonian - When the Hamiltonian is not independent of time no
simple closed form expression for the evolution operator exists. It is possible, however,
to develop an integral equation for the evolution operator that is sometimes quite useful.
To this end we combine the Schrodinger equation

L d

ih— [(t) = H)lv(0) (2.508)
with the defining equation

[1b(t)) = U(t, to)|¢(to)) (2.509)
for the evolution operator to obtain

ih%U(t,to)liﬁ(to» = H(t)U(t, to)|1(to))- (2.510)

Since this is valid for all initial state vectors |1 (tg)), we deduce that
d
ihaU(t,to) = H(t)U(t,to), (2.511)

showing that the evolution operator itself obeys an operator form of the Schrodinger
equation. Unlike the Schriédinger equation for the state vector, however, the operator U
has a well-defined initial condition, namely,

Ulto, to) =1, (2.512)
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which stems from the fact that lims_, U(t,t0)|¥(t0)) = |(t0)). This boundary condition
on U is sometimes described by saying that it is “smoothly connected to the unit operator”.
We can use this initial condition to formally integrate the Schrédinger equation for U as
follows. We write (treating to simply as a parameter, not a variable of integration)

d / ’ { / / /
dt’U(t 0)dt’ = —hH(t YU (t,to)dt, (2.513)
or
U((t,to)
/ dU = —— / HU(  to)dt' (2.514)
U(to,to)
Integrating and using the initial condition this becomes
i t
U(t,tg) =1 — ﬁ/ dt' Ht" U, to). (2.515)
to

This is only a formal solution because the right hand side contains the evolution operator
itself; however it does have the initial condition already built in, and it can be iterated to
obtain an expansion for U in “powers of H”. To do this, we repeatedly insert the whole
integral for U into the integral in which it appears

. t . t’
Ult,to) = 1—% / At H(t) l1% / dt" H{t"U(t", to)]
to

1+ (%) /t dt' H(t <_Z> /t dt’la dat" H(tVH (") + - -(2.516)

_ i U™ (¢, t0) (2.517)

where the nth term of the expansion has the general form

U™ (1, tg) = ( )/dt /tndtn . /ZdtlH(tn)H(tn_l)-‘-H(tl). (2.518)

This and similar expansions for the evolution operator provide a useful starting point for
the development of time-dependent perturbation theories. As a final note, we observe
that this expansion for U implies a similar integral equation and expansion for the state
vector, i.e.,

W) = Ul o))
= 1+ (F) [ e o) e (2519
v = ot — 3 [ A HEOIW), (2520)

where the second term on the right-hand-side of the last expression represents the change
that has occurred in the state vector between times £y and t.



