Chapter 1
INTRODUCTION

1.1 What is Quantum Mechanics?
1.1.1 What is Mechanics?

1. Classical Mechanics (Galileo, Newton, Lagrange, Hamilton)
2. Relativistic Mechanics (Einstein, Lorentz, Poincare)
3. Statistical Mechanics (Maxwell, Boltzmann, Gibbs)

4. Quantum Mechanics (Bohr, Schrodinger, Heisenberg, Dirac)

Mechanics - a statement of the rules for describing the evolution and observation (or
measurement) of a particular class of dynamical systems.

Dynamical System - a set of elements possessing physical attributes, some of which are
measurable and some of which may change as a function of time.

Measurable Attributes are often referred to as observables. To “measure an ob-
servable” means to assign a numerical value to it through some specified measurement
process.

To state a given form of mechanics often entails the specification of four components,
either implicitly, or in the form of postulates regarding:

1. specification - the means by which an arbitrary dynamical state of the system may
be specified (in some sense, completely and uniquely).

2. observables - the types of measurements (or observables) that can be performed
on the system when it is in an arbitrary dynamical state.

3. measurement - the possible outcomes associated with the measurement of an
observable (or observables) when the system is in an arbitrary dynamical state.
(Including, for example, what values can be obtained and what happens to the
dynamical state during the measurement process.)

4. evolution - the rules governing the evolution of the system as it passes from one
dynamical state into another.

It is to be emphasized that these four components are not generally something which
one can expect to derive. Rather, they exist as postulates or axioms of the particular
mechanics which they serve to define. It is the role of experiment to verify or refute the
applicability of a postulated system of theoretical mechanics to a particular class of physi-
cal systems. When a sufficient degree of applicability to physical systems is experimentally
demonstrated the corresponding postulates take on the cultural status of physical laws.
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1.1.2 Postulates of Classical Mechanics:

Postulates of Classical Mechanics for Conservative Systems

(Lagrange formalism)

1. The instantaneous dynamical state of a system is determined through the specifica-

tion of a set of N generalized coordinates and their associated velocities {g¢;(t), ¢;(t)} =
(4,9)-

. Any function A(q, q) of the set (g, ¢) is, in principle, an observable of the dynamical
system. The value of any observable is completely determined once the state of the
system is specified.

. It is, in principle, possible to simultaneously measure any or all of the dynamical
variables of the system with arbitrary precision without disturbing its evolution; the
values obtained will always be just those associated with the dynamical state at the
time of measurement.

. The evolution of the system is governed through the Lagrangian L(q, ¢) of the system
through the Euler-Lagrange equations

4oL IL
dt 0¢; 0q; -

(1.1)

In conservative systems the Lagrangian function is the difference T'—V between the
kinetic and potential energies of the system expressed as a function of the set (g, q).

Postulates of Classical Mechanics for Conservative Systems

(Hamiltonian formalism)

1. The instantaneous dynamical state of a system is determined through the specifica-

tion of a set of N generalized coordinates and their conjugate momenta {q;, p;} =
(¢,p). The p; are new variables defined through the Lagrangian: p; = 0L/J4¢;.

. Any function A(q,p) of the set (g, p) is, in principle, an observable of the dynami-
cal system, and its value is completely determined once the state of the system is
specified.

. It is, in principle, possible to simultaneously measure any or all of the dynamical
variables of the system with arbitrary precision without disturbing its evolution; the
values obtained will just be those associated with the dynamical state at the time
of measurement.

. The evolution of the state is governed through the Hamiltonian H (g, p) of the system
through Hamilton’s equations of motion

dg;  0H

dt - Op;’ (1.2)
dpi o 0H
= (1.3)

The Hamiltonian function, H = ) .p;¢; — L, is the total energy of the system
expressed as a function of the canonical variables (g, p).



What is Quantum Mechanics? 9

The field of Statistical Mechanics recognizes that in some systems (e.g., those contain-
ing 10?3 particles) we may be unable to specify the exact dynamical state of the system
(nor, usually, would we want to). Instead, one settles for a statistical description. For a
classical system possessing a large number of generalized coordinates and momenta, we
have the following:

Postulates of Classical Statistical Mechanics

1. All available information about the instantaneous dynamical state of the system
is contained in a probability density function (or state function) p(q,p,t),
defined so that the differential dP = p(q, p,t)d" qd" p represents the probability of
finding the actual dynamical state of the system in an infinitesimal cell of classical
phase space centered at the point (g, p). The requirement that the dynamical system
be in one of its dynamical states necessitates the normalization condition

/p(q,p,t)qude =1 (1.4)

2. Any function A(q,p) of the set (q,p) is, in principle, an observable of the dynamical
system. In general, its value is completely determined only if the actual dynamical
state of the system is completely specified (which it may never be).

3. It is, in principle, possible to simultaneously measure any or all of the dynamical
variables of the system with arbitrary precision (although in practice this may never
occur). It is not, in general, possible to predict what values will be obtained during
the measurement, because the actual dynamical state prior to measurement is not
known. If p(q,p) is specified, however, it is possible to predict the average value
associated with a large number of measurements of an observable A when performed
on a set of similarly prepared systems

(A) = /p(q,p, t) A(q,p) d" qd"p. (1.5)

It is also generally possible to predict the probability that any given value will be
obtained. For example, if we let P,(q,p) denote a function that equals unity at all
points where A(q,p) = a and is equal to zero otherwise, then the probability that
the value a is obtained upon measurement of the observable A will be P(a) = (P,).

Immediately after a measurement of an observable A yielding a specific value a,
the uncertainty associated with the actual dynamical state of the system has been
reduced, since the system must now be in a state consistent with the value obtained.
Thus the state function p(q, p) collapses upon measurement to those parts of phase
space consistent with the value obtained. Taking into account the normalization,
this implies the reduction

Pa(a:p)pa:p)

P (1.6)

plq,p) —

4. Each point in phase space evolves classically. This gives rise to a change in p(g, p, t),
whose evolution is governed by Liouville’s equation of motion

0 N OH 0p  Op oM
ot~ P =2 50 o 90 p, (L7)
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Comment: The quantum mechanics developed by Schrédinger, Heisenberg, and Dirac is
not intrinsically different in that, as a formalism, it sets out the four basic requirements
normally associated with any type of mechanics. There are, however, elements of it
which seem odd when looked at from the point of view of classical mechanics. These odd
aspects, however, have been deliberately built into the structure of quantum mechanics
to make it agree with experimental observations performed on a large (and growing) class
of physical systems. Our goal is to enumerate and explore the consequences of the basic
postulates of quantum mechanics. To this end, we review experiments that led up to what
is perhaps the earliest “essentially correct” version of quantum mechanics, namely, the
wave mechanics of Schrodinger.

1.2 The Development of Wave Mechanics
Electromagnetic Waves and Photons

The earliest quantitative theory of light was due to Newton: Light is a collection of
particles or corpuscles. But Newton’s predictions could also be obtained through a wave
description (Huygens). Maxwell appeared to clear things up definitively: Light is an
Electromagnetic Wave. Unfortunate Problem: Classical statistical mechanics applied
to Maxwell’s electrodynamics was found to be in profound conflict with experimental
observations regarding the blackbody spectrum and the photoelectric effect. This led
Planck and Einstein to reintroduce Newton’s original concept of light as a particle, i.e., a
photon, each containing a quantized amount of energy

E=hw=hv (1.8)
related to the frequency of the associated wave, and a momentum
7= hk (1.9)

related to the corresponding wavevector. In this construction, the quantity & = h/2r =
1.054 x 10~34Js was an empirical, but obviously fundamental constant required by the
new theory.

Thus, at the turn of the century, there were two entirely different classes of
experiment: one class leading to the conclusion that light is a wave, one to the conclusion
that light is a particle. Taken together, the experimental evidence had elements which
both confirmed and refuted both of these disparate classical pictures. The new mechanics
to be developed had the task of reconciling these experimental observations in a unified
way. To demonstrate some of the features necessary for such a reconciliation, we consider
two examples: the double slit experiment, and the passage of light through a polarizing
filter.

The Double Slit Experiment

Monochromatic plane waves of light are separated into two components by passing through
a pair of slits, and recombined to form an interference pattern.

According to classical wave theory, this pattern results because the intensity at
the screen is not the sum of the intensities from each slit, i.e.,

S # 51+ Sa. (1.10)

Rather, the intensity at any point depends upon the square of the total field at that point;
recall that it is the electric fields (or wave amplitudes)that obey a superposition principle,
not the intensities:

S =|E?=|E, + Ey%. (1.11)



The Development of Wave Mechanics 11

How about the particle picture? Are photons irrelevant to this experiment? Not
at all. When the intensity of the light is reduced, and the screen replaced with an array of
photodetectors, it is found that light energy striking the screen arrives in discrete “lumps”,
as apparently random single events. It is only after a large number of such events are
recorded that the former interference pattern becomes evident. The intensity at any given
point on the screen, as reflected in the interference pattern, reflects the average number of
photons per unit time striking that point. This leads to important unresolved questions:
With what do individual photons interfere? If light is a collection of particles how can
we explain the non-additive nature of the individual intensities associated with each slit?
What do we make of the experimental fact that any attempt to determine the slit through
which the photons actually pass destroys the interference pattern? The reconciliation of
these classically disparate ideas leads to Bohr’s concept of wave-particle duality:

Wave-particle duality - The phenomena we call “light” seems to behave
simultaneously like a wave and like a collection of particles. On the one hand,
the wave amplitude, represented by the electric field E(r, t) at each point,
evolves deterministically according to Maxwell’s equations; but it carries
with it all information regarding the relative probability (or probability den-
sity) of detecting one of the associated particles (i.e., the photons) at that
point. The probability density of detecting a particle at a given point is pro-
portional to the squared modulus |E(r,t)[? (i.e., to the intensity) of the wave
amplitude.

Comments:

1. Note that the smoothly-evolving wave amplitude is a field that contains all possible
information about any statistical predictions that can be made regarding anticipated
experimental measurements. The wave amplitude, therefore, can be viewed as repre-
senting the dynamical state of the system, in analogy to the phase space probability
density function p(q, p,t) which plays a similar role in statistical mechanics.

2. The linearity of Maxwell’s equations, which govern the evolution of the wave ampli-
tude, implies a principle of superposition: If E; (r,t) and E, (r,t) are two separate
solutions to Maxwell’s equations (i.e. acceptable dynamical states of the system)
then a linear superposition (or linear combination)

E(r,t) = ME1 + M\ Ey (1.12)

of these solutions is also a solution, i.e., it is also an acceptable dynamical state
of the system. Such a superposition principle turns out to be one of the essential
features associated with the dynamical states of all quantum mechanical systems.

Closely related to the superposition principle is the associated principle of spectral de-
composition, which we illustrate through another experiment.

Polarization of Light Through a Filter

A plane electromagnetic wave, traveling along the z-axis and linearly polarized along a
transverse direction represented by a unit vector

4= cosOz +sinbyg. (1.13)

encounters an ideal polarizing filter lying in the zy-plane with its transmission axis point-
ing along the z - axis. Classical wave analysis says that we can decompose the electric
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field into components F cosf and E'sin @ along any direction of interest. The latter com-
ponent is absorbed, the former passes through. The light emerging from the filter is then
polarized in the z-direction with an intensity S o |E,|? = E? cos? 6.

How about the photons? As before, at low intensities the light emerging from
the apparatus appears in discrete “lumps”, at random time intervals. Any given photon
either passes through or it doesn’t. It is not possible to tell for certain if a photon will
get through, but the statistics of the process indicate that the probability of any single
photon getting through is p, = cos? f. These observations lead to the following additional
characterization of the measurement process:

1. The result of a measurement process is always one of a certain set of eigenvalues
associated with the particular quantity being measured. The set of eigenvalues for
a given observable is called its spectrum. (Here the eigenvalue of the observable is
equal to one if an incident photon passes through the polarizer and is equal to zero
if it does not.)

2. To each eigenvalue of an observable there corresponds at least one dynamical state,
referred to as an eigenstate of the observable. When the particle is known to
be definitely in one of the eigenstates at the time of measurement, the result will
be the corresponding eigenvalue with unit probability. (Here the eigenstates are
states of linear polarization |Z) corresponding to eigenvalue 1, and states of linear
polarization ) corresponding to eigenvalue 0.)

3. The superposition principle allows the particle to be in a linear superposition of
different eigenstates, the linear coefficients of which we call the amplitude to be in
that eigenstate.

4. The principle of spectral decomposition goes further and demands that an arbitrary
state of the system can be spectrally decomposed in this manner, i.e., written as a
linear superposition of the eigenstates of any observable quantity. Thus, we could
have oriented our detector along any direction in the zy plane and performed a
similar decomposition.

5. In general, the result of a measurement on an arbitrary state is uncertain. However,
the relative probability that the measured value will turn out to be a given eigenvalue
is proportional to the square of the amplitude for it to be in that eigenstate. (Here
the superposition state is essentially represented by the polarization vector and can
be written, using a notation that we will develop more fully later,

|u) = |&) cos 8 + |§) sin 6.
We measure 1 with probability cos? 8, and 0 with probability sin? 6.)

6. Immediately after an ideal measurement, the particle is (with unit probability) in
an eigenstate consistent with the particular eigenvalue measured. (Only photons
which are z-polarized emerge from the polarizer.)

Comments: This last part implies a non-deterministic reduction or “collapse” of the
state of the system to one which is consistent with the result of the measurement process.
This is also similar to what happens with the probability density function p(q,p,t) in
statistical mechanics except for one important difference: in quantum mechanics this
reduction occurs even when the dynamical state is known ezxactly. In the above example,
the wave incident on the filter is completely and uniquely characterized by its polarization
vector and intensity. There is no additional information that can be given that would
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characterize it further, without performing a measurement that would irreversibly alter
the dynamical state. Implication: In quantum mechanics it is not generally true that the
value of a dynamical quantity can be precisely measured without perturbing the evolution
of the system in the process.

Matter Waves

The de Broglie hypothesis: just as there are particle properties associated with “classical
waves” of electromagnetism, so there are wave-like properties associated with material
particles. Verification: Davisson and Germer showed that electrons could be made to
exhibit wavelike interference and diffraction effects, just like light. In analogy to the
photon, one is led to associate with a free material partlcle of momentum p, a wave of
wavevector k related to it through the same relation p = hk as applies to photons, and
with a corresponding wavelength

A= (1.14)

and frequency

- __£ 1.15

“Th T 2mh (1.15)

By applying our conclusions regarding light directly to the case of material parti-

cles one obtains, along with an additional evolution equation postulated by Schrédinger,
what is often referred to as “Wave Mechanics”.

1.3 The Wave Mechanics of Schrédinger
1.3.1 Postulates of Wave Mechanics for a Single Spinless Particle

1. All possible information about the quantum state of a particle at time ¢ is contained
in a complex-valued wave function ¥ (7,t). The wave function ¥ (7,t) gives the
probability amplitude for finding the particle at the point 7 at time t. Specifi-
cally, the probability dP of finding the particle in a differential volume element d®r
centered at 7 at time ¢ is proportional to the squared modulus of the corresponding
probability amplitude:

dP = p(7,t)dr = |(7,t)|*d>r (1.16)

The function p(7,t) = [1(7,t)|? in this expression is the associated probability
density. The normalization of the wave function is often chosen so that the proba-
bility of finding the particle somewhere in the universe is equal to 1. This necessitates
the normalization condition

/Iw(ﬁ t)[d*r =1, (1.17)

i.e., the wave function is “square normalized to unity”.

2. For each observable or measurable quantity A of the system there is associated a
linear self-adjoint operator A, that action of which on the wave function ¢(7) is to
replace it with another function v A(F) Aw For example, the particle’s momentum
p is associated with the operator P = —ihV. When measuring any given observable
A, there are only a certain set of values {a}, referred to as eigenvalues, which may
be obtained. The set {a} of eigenvalues is referred to as the spectrum of A. For



14

Introduction

each eigenvalue a there is at least one normalized wave function ¢, (7), referred to as
an eigenfunction of A, which satisfies the eigenvalue equation for the associated
linear operator, i.e., A¢,(7) = ap, (7). The set of eigenfunctions associated with any
observable are sufficiently complete, that the wave function ¢ (7) for an arbitrary
state of the system may be “spectrally decomposed”

= cata(P), (1.18)

{a}
into a linear superposition of the eigenstates associated with that observable, for
a unique set of complex constants c¢,. Normalization of the wave function ¥ and
the eigenfunctions ¢, lead to a normalization condition for the amplitudes, i.e.,

Z{a} |cal® = 1.

. Measurement of A when the particle is in the state corresponding to the eigen-

function ¢, (7) will yield the value a with unit probability. Indeed, it is only when
the system is in a state represented by such an eigenfunction that it can properly
be said to actually possess the property associated with that observable. The re-
sult of measuring the observable A on the system when it is in an arbitrary state
=73 a} Ca®q, Will be one of the eigenvalues represented in the decomposition of
that state. The probability of measuring a particular eigenvalue a is proportional
to the square of the corresponding probability amplitude. In particular, with the
normalization convention introduced above,

P(a) = |eal*. (1.19)

Thus, ¢, is referred to as the amplitude that a measurement of A will yield the
value a. Immediately after an ideal measurement which yields the value a for the
observable A, the system will be in an eigenfunction ¢, consistent with the value
obtained. For this reason, c, is also referred to as the amplitude that a measurement
of A will find the system in the state ¢,.

. Between measurements the wave function evolves smoothly and deterministically

according to Schrodinger’s equation of motion. For a single particle with no
internal structure Schrodinger’s equation takes the form

()
T Hy(7,t) (1.20)

where the Hamiltonian H appearing in the evolution equation is a differential
operator obtained from the corresponding classical Hamiltonian function H(7,p,t)
by replacmg all occurrences of the momentum p by the momentum operator
P = —ihV. Thus, for example, a particle of mass m moving in a scalar potential
energy U(7,t) has a classical Hamiltonian function

ih

pQ

which leads to the usual form of the Schrodinger equation

2v72
in?? 00— TV i)+ v i),

On the other hand, for a particle of charge e moving in an electromagnetic field with
scalar potential energy U = e¢(7, t) and vector potential A the classical Hamiltonian
takes the form

H(Fpt) = — (ﬁ— El)z LU 1)
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which gives the Schrodinger equation in the form

OV (7, 1 Loe o2
ih—¢é;’t) =5 (fmv - EA(F, t)) G, t) + U(F, ) (F, 1),

Comments: It should be mentioned that in writing the second and third postulates,
as stated above, we have implicitly assumed that the spectrum of the observable A is
discrete, i.e., the eigenvalues take on only isolated “quantized” values, and that the
associated eigenfunctions are square-normalizeable to unity, like the wave function itself.
In fact, many observables of interest (such as the particle’s position, momentum, and
kinetic energy) have eigenvalues that can take on any value in some continuous set (or
union of continuous sets). Such observables are said to have a continuous spectrum.
Occasionally, we encounter observables that have a mixed spectrum, i.e., they have
both a discrete part and a continuous part (the eigenfunctions of the hydrogen atom are
a case in point, with the bound electronic states corresponding to the discrete part, and
the unbound, or “scattering states” being associated with a continuum of positive allowed
energies). In the case of an observable with a continuous spectrum it turns out that
the eigenfunctions are not square-normalizeable to unity, and that other mathematically
convenient normalization conventions are required. Expansion of the wave function
in the appropriately normalized eigenfunctions ¢,(7) of an observable with a continuous
spectrum takes the form of a “continuous summation”, i.e., an integral, so that

() = / da ¢(a) () (1.21)

where the integration is over the entire range of eigenvalues in the spectrum of the observ-
able. Then, rather than talk about a probability P(a), it is more appropriate to speak of
the probability density

pla) = |c(a)f? (1.22)

to obtain an eigenvalue in the range a to a + da upon measurement of A.

In fact, with this modification, much of the description in the first postulate can
be viewed as an application of the second and third postulates to a specific observable,
namely that corresponding to the particle’s location 7 in space, which in the Schrodinger
theory is associated with the linear operator R that simply multiplies the wave function
by 7, i.e.,

Ry(7) = 7 (7). (1.23)

The spectrum of the position observable R is the set of all vectors {7} € R3 where a
particle could be found if we attempted to measure its position. To each such point 7’
in space, there is an eigenfunction of position ¢ (7), corresponding to a particle which
is known, with unit probability to be at that point. Leaving questions of normalization
aside, an obvious candidate for such an eigenfunction is the delta function located at the
point 77, i.e.,

i (F) = 6(F = 7). (1.24)

(See the appendix of this chapter for a discussion of the properties of the delta function.)
The principle of spectral decomposition then demands that the wave function () repre-
senting an arbitrary dynamical state be expandable in these eigenfunctions of the position
operator. That such a decomposition is, in fact, possible follows from the identity

v = [ w0 = [ a e ), (1.25)
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which is precisely of the form (1.21) with the continuous expansion coefficients ¢(7) being
given by the values of the wave function itself. It follows from this decomposition, then,
that ¥(7) represents the amplitude for the particle to be found at 7, with | (7)|? giving
the associated probability density.

The postulates stated above have also been purposely simplified to avoid some
important technical questions that arise when, for example, there are more than one
linearly independent eigenfunction associated with a given observable. Such details will
be ironed out in the next chapter where we formally present the postulates of quantum
mechanics in a way that is applicable to arbitrary quantum mechanical systems. The
postulates given above will then be seen to represent a special, but important, case of
the more general formalism. Indeed, we will often find it useful to illustrate the general
features of the theory using examples taken from the quantum mechanics of a single
particle moving in 3-dimensions. To that end, and to more fully set the stage for the
formal development of the next chapter, it is useful to first spend a little time exploring
some of the consequences of the postulates enumerated above.

1.3.2 Schrédinger’s Mechanics for Conservative Systems

When the potential V(7) is independent of time (so that dV/dt = 0) the Schrodinger
equation

P L
is governed by a Hamiltonian operator
h?v?
H=- 5 + V() (1.27)

which is itself independent of time. It is customary under these circumstances to employ
the method of separation of variables and thus to seek solutions to Schrodinger’s equation
having the separable form

$(7t) = P()x(1). (1.28)
Substitution into Schrédinger’s equation
d
i = yHe (1.29)
dt
and a subsequent division by ¥ = ¢x yields
thdy 1
—— =—-H 1.30
L S Ho (1.30)

Note: the right hand side is a time-independent function of 7 ; the left-hand side is
independent of 7. They both must equal some constant, E having units of energy, thus
thdy 1
A _ “Hbé=FE = hwr. 1.31
R g (1.31)
Here we have introduced another form of this constant wy = E/h having units of fre-
quency.
The time-dependence of the assumed solution is governed by the first-order equa-

tion b
thay
A B = hw 1.32
x dt E (1.32)
which has the solution
1Bt iw
Xg(t) = xp(0) exp(———) = x(0)e ™" (1.33)

h
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A convenient choice is to set x(0) = 1, letting ¢(7) absorb any multiplicative constants.
Thus, if separable solutions exist, they will have the form

Vp(F,t) = pp(Fe "t (1.34)

where the spatial function obeys a second-order differential equation which we can write
in operator form as

Hop(r) = E¢p(r), (1.35)

which, after re-inserting the spatial dependence, becomes

h?
*%VQ(f)E + V() = Epp(r). (1.36)
Comments:

1. This latter equation is the eigenvalue equation for the Hamiltonian operator
H. In Schrodinger’s theory, H represents that observable associated with the total
energy of the system (as does the corresponding function in classical mechanics).
Some author’s refer to this last equation as “Schrodinger’s equation”, or the “time-
independent Schrédinger equation”. To avoid confusion, we shall reserve the term
“Schrodinger equation” ezclusively for the evolution equation appearing in the pos-
tulates, and simply refer to this last equation as the“energy eigenvalue equation”.

2. In any specific problem, various physical conditions can restrict the values of E for
which physically acceptable solutions exist. Such regularity conditions include, e.g.,
normalizeability, differentiability, and the requirement that there be finite energy
content in any finite region of space.

3. The values of E for which acceptable solutions exist we identify with the energy
eigenvalues of the system. A measurement made of the energy when the system
is in the state 1 will yield the value E with unit probability. The set of allowed
energies { E'} is the spectrum of H, or the energy spectrum of the system.

4. Such energy eigenstates are also commonly referred to as stationary states since
the associated probability density function

p(7,t) = [p(F 1) = pp(Me” = 2 = |pg(F)* (1.37)
is, in fact, independent of time, as are any other measurable properties.

1.8.3 The Principle of Superposition and Spectral Decomposition

The linearity of Schrodinger’s equation assures us that any superposition of stationary
solutions is also a solution to the evolution equation. Nonetheless, one may ask: Is such
a superposition of stationary solutions a solution to the energy eigenvalue equation? Is
such a superposition of stationary solutions a stationary solution? Generally, the answer
is “no”, for both of these questions. To explore this, let us enumerate the acceptable
stationary solutions using an index n = 1,2, ---. Thus, we assume solutions to the energy
eigenvalue equation of the form

which correspond to stationary solutions of Schrédinger’s equation of the form

U (Fyt) = G (P)e ", (1.39)
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A general solution to Schrédinger’s equation can then be written as a linear combination

() =D et (et (1.40)

n

where w, = FE,/h, and the ¢, are arbitrary complex numbers. Such a state is not
stationary, nor is it a state of well defined energy, since it is a superposition of states of
many different energies, but it does obey Schrédinger’s equation of motion (Proof: left
as an exercise.) The principle of spectral decomposition (as applied to the energy of the
system which is assumed to be an observable) demands that an arbitrary state of the
system be expressible as a superposition of energy eigenstates. Note that if we know the
numbers ¢, associated with the wave function at some arbitrary time ¢ = 0, during which

U(7,0) =D et (F) = D en(0)6,,(7) (1.41)

n n

then at later times we can write

YTt = en(t)d () (1.42)

where ¢, (t) = c,e”*nt, thereby guaranteeing that such a decomposition in the eigenfunc-
tions {¢,,(7)} is possible at all later times. These developments raise another interesting
point. According to the postulates, the dynamical state is specified through the wave
function (7, t). But now we see that if we know the energy eigenfunctions {¢,,(¥)} we
can specify the wave function in two ways:

1. Specify ¢(7) for all values of 7, or

2. Specify the coefficients ¢,, for all values of the index n.

In either case we have to specify an infinite number of complex values. This allows
us to envision representing the dynamical state using, e.g., a column vector

(1.43)

On the other hand, this is really no different than arranging all the values of the wave
function in some sort of array
¥(r)
¥(2)
: (1.44)
P(n)

except for the fact that the values defining the wave function are indexed by the continuous
(or noncountable) infinity of points in R3 rather than by the discrete (or countable) infinity
of points in the set Z of integers. Thus, although it initially seems more natural to refer
to and think of the collection of values {¢(7)} as a function rather than a column vector,
this difference is not really very large.
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The main point of this comparison is to introduce the idea that the actual “state”
of the quantum system may be associated with a more fundamental mathematical object
than the wave function introduced in Schrodinger’s version of quantum mechanics. Indeed,
the wave function is just one possible (infinite) set of numbers that can be used to represent
the underlying object (which we will refer to as a state vector), in the same way, e.g.,
that displacement vectors 7 in R have an existence that is independent of the particular
coordinates (and coordinate system) which are used to represent them. We will pursue
this idea quite vigorously in a short while. For now, however, it is useful to develop an
example.

1.3.4 The Free Particle

We consider a particle subject to no forces at all, i.e., a free particle. The potential
associated with a particle subject to no forces is a constant, which we can take to be zero.
In this limit the energy operator consists only of the kinetic energy operator

T=Hy=-——V? 1.4
0 2mV (1.45)
and the energy eigenvalue equation H¢p = E¢ takes the form
— 5,V 0p(F) = E¢p(r) =0. (1.46)
m
Multiplying through by —2m/ h?, we can write this in the form

Vi, + k2¢p, =0 (1.47)

where we have re-expressed the energy using a constant

in terms of which
. h2k? 49

In this form, the free particle energy eigenvalue equation is referred to as the Helmholtz
equation, which has solutions that can be separated in many different coordinates systems,
but for the moment we will focus on applying the method of separation of variables to
the cartesian coordinates z,y, and z. That is, we assume that

¢ (1) = X (2)Y () Z(2) (1.50)
and substitute into the Helmholtz equation to obtain (after dividing by ¢ = XY Z )

1 &?X 1 %Y 1d*Z
el el Y 1.51
Xda:QJrYdy2+Zdz2 (1.51)

This equation demands that the individual terms on the left each equal a constant, which
we denote by —k2, —k2, and —k?, respectively, the sum of which add up to —k2. Thus

y b) z)
we end up with three ordinary differential equations

X"+ kX =0 (1.52)
Y'+ kY =0 (1.53)
7' +k2Z =0 (1.54)
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which have the solutions

X(z) = Agett=? (1.55)
Y (y) = Ayetov (1.56)
Z(z) = A eth? (1.57)

The product of these gives the free particle energy eigenfunctions in the form we seek:

-
o

Pp(F) = Acibatbyyhes) _ g ik (158)

where we have introduced a vector E, with components k,, k,, and k., which labels the
particular solution. Note that these second order differential equations actually have two
linearly independent solutions, e.g., Ae***+ but if we interpret the solution Aet*:% as a
plane wave traveling with wavevector k,, then we automatically obtain both solutions by
allowing k, to take both positive and negative values. Thus, the complete set of solutions
is obtained by considering all possible wavevectors k € R3. Combining this with the time
dependence associated with this energy eigenstate, we obtain the stationary solutions for
the free particle, namely

@bl_c'(ﬁ t) = AeiE'Fe_i“”"t = Aei(_"F_w"'t) (1.59)
where E B2
k
_ ok _ W 1.
kT T om (60

Thus, the free particle energy eigenstates are plane waves traveling along the direction
associated with the wavevector k which labels the solution. Note that the energy spectrum
associated with the free particle is the set of values
h2k? R o
=—= k-k

- = (1.61)
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which includes all possible positive energies, as in the classical theory. We exclude negative
energies, which would require imaginary wavevectors, because they would be associated
with wavefunctions that would grow exponentially in some directions of space, and thus
are unsuitable. As it is, the wave functions that we have produced are not entirely
well-behaved, since they are not square-normalizable. We will address this difficulty in
a moment. First, we observe that these free-particle eigenstates (i.e., eigenstates of the
free-particle Hamiltonian) are also eigenstates of the momentum operator,

P = —ihV, (1.62)

which is a vector operator, i.e., a collection of three operators { P,, Py, P.} that transform
like the components of a vector. The eigenvalue equation for the momentum operator
takes the form

Po =, (1.63)
where the vector ' in this expression represents a vector eigenvalue appropriate to the
vector operator. Our plane wave solutions obey this equation, since

Pop(7) = —ihV Ae®T = —in(ik) A’ ™ = Rk AR T (1.64)

or .
Pop(r) = ppog(7), (1.65)
where p; = hk. Thus, Schrodinger’s wave mechanics recovers, as a special case, the

hypothesis of deBroglie: with every free material particle of momentum p, we can associate
a plane wave of wavevector k = pj;/h, and frequency w = hk/2m.
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Normalization Conventions for Free Particle Eigenstates

We now turn to the question of the normalization constant. The question is, what value
should we assign to the constant A in (1.59) so that the probability of finding the particle
somewhere in the universe is equal to one. A naive attempt to determine the magnitude
of the normalization constant would lead us to evaluate the integral

/d3rp(F,t) = /dST\@bE(F,t)\Q = /dST\A\Q, (1.66)

which illustrates the problem. If | A|? is finite then the integral over all space diverges. If we
set A equal to zero, then the wave function vanishes everywhere. Does this mean that our
solutions are, in fact, unacceptable? We are reluctant to let them go, since they recover
the classical spectrum so nicely, and moreover, they do allow us to obtain information
about the relative probabilities of finding the particle in some region of space. That is,
if the particle is in one of these free particle eigenstates, then the probability to find the
particle in any given volume is simply proportional to the volume of the associated region.
The only problem is that, since the particle can be anywhere, the relative probability of
finding it in some particular volume is exceedingly small when compared to the volume
of the universe. Physically, this does not seem so implausible. We are thus encouraged to
seek a reasonable normalization convention for these states that will allow us to deal with
them in a mathematically consistent fashion. In fact, two such conventions are commonly
adopted:

1. Box Normalization - In this convention, the wave function is assumed to be confined
to a very large square box of volume V', with appropriate boundary conditions
imposed at the edges of the box. A useful convention is to make the value of the
wave function equal at opposite faces, a choice referred to as periodic boundary
conditions. Thus, one sets

—1/2 ik-7 =
(i) = { V e forreV (1.67)

0 for7 ¢V

In this way the wave function is square-normalized to unity. Unfortunately, this
convention has the drawback that it discretizes the free particle spectrum of both
the energy and the momentum, since the boundary conditions require that only
wavelengths that just fit within the dimensions of the box are allowed. This quanti-
zation of the free particle spectrum is unfortunate, and can be avoided by employing
the following alternative convention.

2. Delta Punction Normalization - In this approach, one gives up the attempt to pro-
duce a square-normalized wave function, but instead chooses the normalization con-
stant for mathematical convenience. Specifically, we choose the constant A so that
the set of functions {¢y(7)} for all wavevectors k form a generalized orthonormal set
of functions on R3.

To understand what this means we need to define the concept of an orthonormal

Orthonormal Set of Functions - A set of functions {¢, ()} labeled by a
discrete index n is said to form an orthonormal set of functions on the interval
(a,b) if

b . .
[ i@ =0 ={ 5 Fu s (169
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Similar definitions can obviously be given for an orthonormal set of functions on
the whole axis, or for functions in higher dimensions. Thus, a set of functions {¢,,(7)}
labeled by a discrete index n is said to form an orthonormal set of functions on R? if

/ B $ (b (7) = S, (1.69)

where here and everywhere which follows, an integral with no limits implies a definite
integration over all values associated with the integration variable (in this case over all
vectors in R3). Note that the box-normalization convention described above produces a
discrete set of functions which form an orthonormal set over the volume of the box in
which they are contained.

Generalized Orthonormal Set - A set (or family) of functions {¢, ()}
labeled by a continuous index o € R is said to form an orthonormal set of
functions on the real axis if

[ @) (a) = 80— ). (L.70)

This is clearly the continuous analog of the expression above involving the Kro-
necker delta function defined on the integers. Similar definitions can obviously be given
for an orthonormal set of functions in higher dimensions. Thus, a set of functions {¢,, ()}
labeled by a continuous index « is said to form an orthonormal set of functions on R3 if

/ Br §(7) o (7) = 80 — o). (1.71)

A set of functions obeying this relation we will refer to as being Dirac normalized. This
is clearly the sort of thing which we need for the plane waves, since it implies that when
a = o, the modulus-squared integral diverges (as do the plane waves for an nonzero
value of A). This definition specifies the particular way in which the integral diverges for
two neighboring members of the set as one approaches the other (i.e., in a way which is
proportional to the delta function). To apply this to the plane waves, we simply need to
generalize the continuous index « into a vector k drawn from a continuous set of vectors
in R3. Thus, the Dirac normalization condition for the plane waves involves choosing the
constant A such that

[ 6105 ) = 6 - ). (172

Inserting the expression for the plane waves we obtain the normalization condition
/ dr B3y (7) = | AP / dir & F 0T — (k1) (1.73)
In this expression, the three dimensional delta function must be constructed from the

product of three delta functions in k,,k,, and k.. A change of variable in the plane wave
representation of the delta function

Sz —2') = dk etk

“ ) oor

z—a') (1.74)
in which we interchange the roles of k£ and x leads to the result that

dr ;.
ik —ke)e _ Sk _ L/ 1.
/27‘_6 6( ‘ m) ( 75)
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and similarly for the remaining cartesian components of k. Combining these results we
deduce that
/ Ry 5(k — k') (1.76)
(2m)3 ' ’
Comparison with our normalization relation reveals |A|? = (27r) 3 to be the relation we
seek. Choosing A real and positive we deduce that the set of Dirac normalized plane
waves takes the form

ezk~7’

Pp(r) = COEE (L.77)
With this convention for the free particle eigenstates we retain a continuous spectrum for
both momentum and energy, but we give up the strict probabilistic interpretation associ-
ated with the wave function. In practice, this does not turn out to be so important, since
a real particle is inevitably in a superposition of free particle states. Such a superposition
of states can be normalized.
We will often find it convenient to work through examples in lower dimensions.
Thus, e.g., we will have occasion to refer to a particle moving in one-dimension, and there-
fore described by a wave function ¥ (z). A free-particle in one dimension is then associated
with eigenstates which are one-dimensional plane waves. A review of the analysis given
above reveals that the appropriate normalization for one-dimensional plane waves is

eikx

a7 (1.78)

Pp(x) =

1.3.5  Superpositions of Plane Waves and the Fourier Transform

The superposition principle implies that a superposition of stationary solutions to the
free particle Schrodinger equation is itself a solution to that equation. Thus, a possible
solution to Schrodinger’s equation of motion can be written

W) = / Bk B(R)pe(F)e (1.79)
This state evolves from another one which at ¢ = 0 has the form
0l = [ R, (1.80)

It is useful to write this expansion in the form
vt = [ i o) (181)

where 121(1_5, t) = 121(1_5, 0)e~ ™kt is the amplitude (in this continuous superposition) of the
state associated with the free particle eigenstate of wavevector k. In the theory, dP =
p(E)d3k = |[{b(K)|2d3k is the probability that a momentum measurement will yield a value
in an infinitesimal neighborhood of pi = hk. The principle of spectral decomposition
demands, in fact, that an arbitrary state of the system admit such an expansion in free
particle eigenstates. This is actually guaranteed by Fourier’s theorem which states that
any sufficiently regular function (7, t) admits a Fourier expansion

~A =

3 o
W(F, ) = /ﬁmk,t)em (1.82)
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in plane waves, where the expansion function 121(1_5 ,t), referred to as the Fourier transform
of (7, t), is given by the relation

~n = 37’ ~ L,
bk, 1) —/(;TW@&(FJ)K“”- (1.83)

Verification of these expressions follows from the plane-wave expansion for the delta func-
tion. That is, if we insert the expansion for ¢)(k,t) into that for (7, t), being careful to
use a different integration variable

(7 t) = / (2(5)];/2 / (2(1:;3//2 (7 t) o iR iR (1.84)
and re-order the integration
Y(rt) = / d*r'y (i 1) / (;&371;3 ) (1.85)
we recognize the expansion for §(# — 7’). Thus,

V(7 ) = / Br (7 )87 — ) = (7). (1.86)

Note, that a plane wave expansion of the wave function is always possible, even when the
Hamiltonian is not that associated with a free particle, since all we are doing, in a sense,
is expanding in the eigenstates of the momentum operator, or equivalently, of the kinetic
energy operator. Since these are observable quantities, the principle of spectral decom-
position demands that such an expansion be possible independent of the Hamiltonian of
the system. In the particular case in which the Hamiltonian is that of a free particle,
however, we know in addition that the time dependence has a particularly simple form,
namely,

Ok, t) = (k, 0)e™nt, (1.87)
where wy = E/h = hk2/2m.

We conclude with the observation that this example of the free particle has again
shown that there is more than one way to represent the dynamical state of the system. By
Schrodinger’s postulate, the dynamical state at time t is described by the wave function
(7, t). However, it is clear from the discussion above, that all information in the wave
function is also contained in its Fourier transform: if we have 121(]2, t) we can always
construct ¥ (7, t). This must be true for any observable, not just momentum and/or kinetic
energy. Hence the particular set of numbers used to represent the state of the system
can be chosen to correspond to a particular observable which one might be interested
in analyzing. This is similar to the idea of choosing a convenient coordinate system in
R3 in which to solve a particular problem in classical mechanics. In what follows, we
construct a formalism for quantum mechanics which does not choose at the outset any
particular coordinate system, but which recognizes that the wave function ¢(7,t) , its
Fourier transform 121(]2:’, t), or any other set of expansion coefficients {c, (t)}, simply give
a means of representing an object (what we will refer to as the state vector) that has an
existence independent of the means that may be chosen to do so.



