Chapter 3
THE HARMONIC OSCILLATOR

We now consider an extended example which allows us to apply the theoretical apparatus
constructed in previous sections. The example we choose, that of a particle subjected
to a linear restoring force - the so-called harmonic oscillator - is important for several
reasons. First, it is one of the relatively small number of quantum mechanical problems
that can be solved exactly and completely. In addition, the problem provides a basis for
our understanding of many important physical problems, including molecular vibrations,
the vibrational excitations of solids (i.e., phonons), and the quantization of the electro-
magnetic field (photons). In a real sense, the one-dimensional harmonic oscillator is the
main building block of a great deal of quantum field theory.

3.1 Statement of the Problem

We consider a particle of mass m subject to a linear restoring force F' = —kx, correspond-
ing to the quadratic potential

1 1
V(x) = kx? = —mw?x? (3.1)
2 2
where w = y/k/m. In the Hamiltonian description of classical mechanics, the system
is described by the dynamical variables {x,p}, and the evolution is governed by the
Hamiltonian

¥ 1
H=T+V = +§mw2x2. (3.2)
Hamilton’s equations of motion
. OH _p
H
p = faa—x = —mw?z (3.4)

are, upon taking a second derivative, equivalent to the familiar Newtonian equations
P+w?r=0 P+wp=0 (3.5)
whose solutions lead to the familiar oscillatory behavior
z(t) = Asin(wt + §) (3.6)

p(t) = Amw cos(wt + 6). (3.7)
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In passing from a classical treatment to a quantum mechanical one, the dynamical vari-
ables are replaced by operators

rz— X
p— P=hK (3.8)

which obey the canonical commutation relations
[X, P] =ih. (3.9)

Evolution of the quantum mechanical system is governed by the associated Hamiltonian
operator
P2 1
H=— +-mw’X> 1
o T 5w (3.10)

Since the system is conservative (0H/0t = 0), this evolution is best considered in the
basis of the eigenstates |¢,,) of the Hamiltonian, which are assumed to span the space of a
single particle moving in one-dimension, and which obey the energy eigenvalue equation

(H — E,)|¢,) = 0. (3.11)

As with any eigenvalue problem, we need an initial representation in which to work. In
the |x) representation, associated with the eigenstates of the position operator X, this
becomes a differential equation

K2 2
Bl

1
—5 T3 —mw?a? — En] bp(z) =0 (3.12)

2

for the eigenfunctions ¢,,(x) = (x|¢®,,). The notation that we have introduced suggests
a discrete spectrum, and, indeed it can be anticipated that all of the eigenstates of the
harmonic potential must be bound states. This follows from the observation that the
potential energy of the oscillator becomes infinite as |x| — oo. As a result, the wave
function must go to zero at large distances from the origin in order for the energy of the
system to remain finite. Thus, the above equation is to be solved with the boundary
condition ¢,,(z) — 0 as |z| — oo, characteristic of a bound state solution.

Of course, it is also possible to solve the eigenvalue equation in the wave vector or mo-
mentum representation. Indeed, in the |k) basis, the eigenvalue equation for the harmonic
oscillator is also a second order differential equation

h2)2 1 %
— —E k) — —mw?—2 = 1
{2m n} ¢, (k) 5w s 0, (3.13)

due to the fact that « = id/dk is a differential operator in that representation. Again,
this eigenvalue equation is to be solved under the requirement that the solution vanish as
|k| — o0, so that the energy of the system (in this case the kinetic energy) be finite.

A traditional approach commonly taken to solve either of these equations is the so-called
power series method, the basic steps of which we enumerate for the spatial eigenfunctions
below:
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7&1’2

1. Determine for large = that the solution has the asymptotic form ¢(z) ~ A(z)e ,
where o = mw/2h, and A(x) is slowly varying in . This asymptotic form follows
since for large x the differential equation can be written [cf. Eq. (3.12)] in the

simpler form
¢,  miw?

e Tx%f)n(x) =0. (3.14)
2. Assume a power series solution of the form
o(z) = e—o’ Zakxk (3.15)
k

to describe the slowly-varying function A(z), obtaining a recursion relation for the
coefficients ay.

3. Show that if the series does not terminate, the series produced will yield a solution
that diverges exponentially as e’ for large z. Deduce, thereby, that the solutions
corresponding to physically acceptable solutions must have series which terminate,
i.e., for which A(zx) is a polynomial in x.

4. Deduce the values of energy E,, for which the series terminates, thereby solving the
eigenvalue problem.

In what follows we take a different approach, due to Dirac, that allows us ultimately to
obtain all eigenfunctions from the solution to a simple first-order differential equation.
This algebraic method uses the fundamental commutation relations to directly deduce the
spectrum and degeneracy of the harmonic oscillator Hamiltonian.

3.1.1 Algebraic Approach to the Quantum Harmonic Oscillator

To facilitate our study we begin by introducing some simplifying notation. We observe
first that the classical harmonic oscillator possesses a natural frequency w. Quantum
mechanically this implies the existence of a natural energy scale ¢g = hw. Thus, the
Hamiltonian, which itself has units of energy, can be written in the form

P2 1 5., ho[1P? 1 2 9
hw [ P? mwX?
. w 3.17
2 {mfw h ] ( )
or more simply
H="202 1 ) 3.18
=5 +q (3.18)
in which
__r (3.19)
P vmhw .
and
g= %X (3.20)

represent dimensionless momentum and position operators, respectively. (Note that we
are relaxing our convention of representing operators by capital letters.) It is readily
verified that these new operators obey a dimensionless form

lg,p] =i (3.21)
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of the canonical commutation relations, and apart from a slightly different normalization,
the eigenstates {|¢)} and {|p)} of these operators are essentially those of their dimension-
ally correct counterparts {|z)} and {|k)}. There is a representation associated with each
set of states, so that

/mmwzlzjwmww (3.22)

{ald’) = 8(¢ = q) (plp") = é(p — ')
in terms of which we can expand and arbitrary state of the system (which is that of a
particle moving in one-dimension). Thus, we can write

w—/m@w@m—/m@w@m, (3.23)

— 00 — 00

which define convenient position and momentum wavefunctions, 1(q) and (p), respec-
tively. We can, moreover, expand each basis ket in terms of the basis vectors of the
other representation just as we can for the normal states of the position and wavevector
representations:

m>—@m”ﬁm@ww
m>—@ﬂﬂjf@fwm (3.24)

Finally, it is straightforward to show that in the |q) representation p acts like a differential
operator, i.e.,

d
pita) — —i252 (325)
and in the |p) representation ¢ acts like a differential operator
Ay
q¥(p) — z—d;p ), (3.26)

To proceed, it is useful to note that the Hamiltonian for the corresponding classical
problem is factorizable, i.e., if ¢ and p were classical variables we could write

1
H= %(q2 +p%) = 5hw(g+ip)(a—ip).  (in the classical limit). (3.27)

The fact that ¢ and p do not commute renders this factorization invalid, but it does lead
us to consider the non-Hermitian operators

a= %(q +ip) at = %(q —ip) (3.28)

in terms of which our original operators ¢ and p can be written
(at —a). (3.29)
The product of at and a is easily evaluated:

ata = %(q —ip)(q +ip) = %[qQ +p? +i(gp — pg)]- (3.30)
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Recognizing the commutator [g,p] =i in this last expression we find that

L1

ata = 5((12 +p?) (3.31)

— 5
This identity allows us to express the harmonic oscillator Hamiltonian in the form

H= %(p2 +¢?) = hw(aTa + %). (3.32)

Introducing one further bit of simplifying notation, we denote by
N=a"a (3.33)

the operator product of a™ and a. Thus, the Hamiltonian H can be written in the
following simple and suggestive form
1

H = (N + )hw. (3.34)

It is obvious that the eigenstates of the (manifestly Hermitian) operator N = a*a are
also eigenstates of the harmonic oscillator Hamiltonian. Indeed, if we can find a complete
set of eigenstates |n) such that

N|n) =n|n), (3.35)

then these states will also be eigenstates of the Hamiltonian, i.e.,
1 1
Hin) = (N + §)M|n) =(n+ §)M\n> = E,|n) (3.36)

where E,, = (n + %)hw Thus, we change our original notation for the energy eigenstates
so that [n) = |¢,,). It is important to stress that, at this point, we haven’t really done
anything, since we don’t know what values are in the spectrum of the operator N = a*ta.
We have simply transferred the eigenvalue problem that we have to solve to that of the
operator N, rather than the operator H. We will refer to the operator N as the number
operator, because, as we will see, it counts the number of energy quanta, in units of fuw,
associated with the system. Our goal in what follows is to use the commutation relations
obeyed by the new operators a, at, and N = ata, to deduce the structure of the energy
eigenstates of this system.

The commutation relations that we will need are easily obtained. We note, first, that

@) = 3la+ip.a— vl = 5ilp.a) —ila.p) = 5 (a8l + lop) (337
which the canonical commutation relations reduce to
[a,at] =1. (3.38)
One consequence of this relation is that aa®™ = ata + 1, so that we can write
aat = N + 1. (3.39)

Next, we evaluate the commutator

[N,a] = [a"a,a] = a™[a,a] + [aT, d]a (3.40)
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which our previous result reduces to

[N,a] = —a. (3.41)
Finally, we evaluate
[N,a"] =[aTa,at] = aT[a,a™] + [aT,aT]a (3.42)
which reduces to
[N,at] =at. (3.43)

Combining these relations, we have the following closed algebra of commutation relations

[a,at] =1 [N,a] = —a [N,at] =at. (3.44)

3.1.2  Spectrum and Eigenstates of the Number Operator N

Using the commutation relations obtained above, we now deduce a number of basic prop-
erties associated with the eigenstates of the number operator N and, hence, of the eigen-
states of the harmonic oscillator Hamiltonian H. In what follows, we begin by simply
assuming the existence of at least one nonzero eigenvector |n) of the observable N. This
is a trivial assumption, since N is a simple function of the observable H, and is therefore
an observable of the system. This assumption then allows us to prove the following:

1.) Positivity of eigenvalues: If |n) is a nonzero eigenvector of the operator N, and n is
the associated eigenvalue, then n > 0. In other words, the eigenvalues of N are positive
definite.

Proof: This just follows from the obvious positivity of the operator N = aTa, which
implies that if N |n) =n|n) then

(n|N|n) = n(nln) = (n|a*aln) = |la|n)||* (3.45)
so that 9
n= |?n7|‘7>2|> > 0. (3.46)

which proves the assertion.

2.) Action of a™ on eigenvectors of N: If |n) is an eigenvector of the operator N with

eigenvalue n, then the vector
n4) = a’|n) (3.47)

is an eigenvector of N with eigenvalue n + 1.
Proof: We consider the action of N on the state |ny), and use the commutation relation
[N,a™] = a™, to deduce that Na* = a™N +a* = a*(N + 1), and hence

N|ny) = Nat|n) = at (N + 1)|n) = at(n+ 1)|n) = (n + 1)(a™|n)) (3.48)
so that
Ning) = (n+ Dl (3.49)

showing that |n4) obeys the eigenvalue equation. Note that the vector |ny) is nonzero,
since
(ny|ny) = (nlaa™|n) = (n|N + 1|n) = (n + 1){n|n) >0 (3.50)



Statement of the Problem 109

As a corollary, it follows that if there exists one nonzero eigenvector |n), then there
necessarily exists an infinite sequence of eigenvectors {|n),at|n), (a¥)?|n),- - -} associated
with a corresponding increasing sequence {n,n +1,n+2,---} of eigenvalues that can be
obtained by repeated application of the operator a® to the state |n). For this reason,
the operator a¥ is often referred to as the raising operator or the creation operator,
because, as we will see, it acts to create quanta of energy in the system.

3.) Action of a on eigenvectors of N: If |n) is an eigenvector of N with eigenvalue n,
and if [n_) is defined through the relation

|n_) =aln) (3.51)

then there are two possibilities, one of which must be true, either: (i) the ket |n_) is the
null vector, in which case n = 0, or (i) the ket |n_) is an eigenvector of N with eigenvalue
n— 1.

Proof of (i): We note first that if |[n_) =0, then

(n_|n_) =0=(nlaTaln) = (n|N|n) = n(n|n) (3.52)

showing that n = 0, since |n) is by assumption nonzero. Conversely, if n = 0, the same
expression read from right to left shows that (n_|n_) = 0, which implies that |n_) is the
null vector. As a consequence, we see that any eigenvector |0) of N with eigenvalue n =0
obeys the equation

al0) = 0.

Proof of (ii): If n # 0, then the argument above shows that [n_) is not the null vector,
since then (n_|n_) = n(n|n) # 0. We then consider the action of N on |n_) and use the

commutation relation [N, a] = —a, to deduce that Na = aN — a = a(N — 1), so that
N|n_) = Na|n) = a(N —1)|n) = a(n —1)|n) = (n — 1)(a|n)) (3.53)
and thus
Nin_) =(n—1)|n_). (3.54)

This last equation shows that [n_) is a nonzero eigenvector of N with eigenvalue smaller
by one than that of the eigenvector |n). This implies, as a corollary, that if there exists one
nonzero eigenvector |n) then there exists a sequence of eigenvectors {|n),a|n),a?|n),---}
associated with a corresponding sequence of decreasing eigenvalues {n,n —1,n —2,---},
which can be obtained by repeated application of the operator a. For this reason, the
operator a is often referred to as the lowering operator or annihilation operator,
because it acts to annihilate or reduce the number of energy quanta in the system.

4.) The eigenvalues of N are the non-negative integers - We can now assert that the
spectrum of the number operator IV consists of the numbers n = 0,1,2,---. To prove this,
assume that there exists a (necessarily positive) eigenvalue n > 0 of N which is not in this
set. Given any nonzero eigenvector |n) with this eigenvalue, we could then produce non-
null eigenstates of N with negative eigenvalues by repeated application of the lowering
operator a. This would violate our proof that N has no negative eigenvalues. On the other
hand, if n is a positive integer or zero, then the sequence of eigenvalues terminates at zero
before it can produce negative eigenvalues. That is, if n = 0, the sequence terminates
immediately, with
al0) = 0.
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(Note that |0) on the left is the eigenvector with eigenvalue 0, while the 0 on the right
is the null vector.) If n is a positive integer, then the sequence terminates after exactly
n steps, i.e., a”~1|n) is an eigenvalue of N with eigenvalue 0, so by our previous result
a™|ny = 0. Thus the only possible values for the eigenvalues of n are the non-negative
integers. Since one of these is, by assumption, not null, we can produce all those with
lower (positive) integer values by application of a and all those with higher integer values
by application of a*. Thus, all values in the set n = 0,1,2,--- must be eigenvalues of N.
This still leaves the question of degeneracy, i.e., the possibility that there may be more
than one linearly independent eigenvector for a given eigenvalue n.

5.) The eigenvalues of N are nondegenerate - We will first show that if the eigenvalue
n is nondegenerate, then so is n + 1. To see this, assume that n is nondegenerate, and
let |¢,,, 1) and ¢, ;) be two arbitrary eigenstates of N having eigenvalue n + 1. From
these states we can then produce the states |¢,) = al¢, 1) and |¢,,) = a|,, ), which
would have to be eigenstates of N associated with the nondegenerate eigenvalue n, and
so are linearly dependent. For two vectors, linear dependence implies proportionality, so
there exists a constant \ such that |¢,) = AJ,,). Acting with the raising operator a™
then reveals that

a’+|¢n> = a’+a|d)n+1> = N|¢n+1> = (TL + 1)‘¢n+1>
a’+(>\‘¢n>) = )\a+(l"¢n+1> = )‘N‘wn+1> = )\(TL + 1)‘¢n+1> (355)

from which we deduce that [¢,,, ) = A|¢,,41). This shows that |¢,, ;) and [+, ) are
necessarily linearly dependent. There is at most one linearly independent eigenvector of
N with eigenvalue n + 1. Hence, if eigenvalue n is nondegenerate, so is n + 1.

To complete the argument, we now show that there exists, in fact, exactly one
linearly independent eigenvector |0) of N with eigenvalue n = 0, from which it follows that
all the eigenvalues of N are nondegenerate. To do this we explicitly construct the corre-
sponding eigenfunction ¢,(q) = (g|0) in the position representation. This is facilitated by
the fact, shown above, that any eigenstate |0) of N with eigenvalue 0 is annihilated by
the lowering operator, i.e., it obeys the equation

al0) = 0. (3.56)

Using the relation a = %(q + ip), this implies that

(alal0) = %@q +ipl0) = %m diqmo(q) ~0 (3.57)

in which we have used the differential form taken by the operator p in the position repre-
sentation. This first order differential equation leads to the relation

d
%o _ —qdg, (3.58)
Po
which can be integrated from ¢ = 0 to obtain
1
Infeo(a) /0 0)] = —54° (359

or
2

$o(g) = bo(0) e 27 . (3.60)
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Thus, the eigenfunctions of N with n = 0 differ from one another only through an overall
multiplicative constant. Thus there is only one linearly independent solution with this
eigenvalue. The eigenvalue n = 0 is, therefore, nondegenerate as are all the eigenvalues of
N.

We now summarize the results of the preceding series of arguments. The spectrum of the
number operator NN is the set of non-negative integers

spectrum(N) = {0,1,2,---}. (3.61)

For each element in this set, there exists exactly one linearly independent eigenstate
|n). It follows that the spectrum of the harmonic oscillator Hamiltonian is the set of
nondegenerate energies

1
spectrum(H) = {E, = (n+ §)ﬁw |n=0,1,2,---}. (3.62)

Note that the eigenstates of H form a set of equally spaced levels starting at the minimum
energy Ey = %hw, which is often referred to as the zero-point energy of the ground state.
The first excited state F; is higher in energy than the ground state by one quantum
AE = hw of energy, and the energy spacing between adjacent levels is a constant. The
number operator N, therefore, counts the number of energy quanta that have been added
to the system, and the operators a®™ and a can be viewed as creating or annihilating these
energy quanta by raising or lowering the value of n.

Up to this point we have deduced essential features associated with the eigenstates and
eigenvalues of the harmonic oscillator Hamiltonian. We now flesh out the analysis by
explicitly constructing an ONB of square-normalized energy eigenstates.

3.1.3 The Energy Basis

We have already constructed the eigenstate of N with n = 0 by deriving the form of the
wave function

1.2
(q|0) = ¢o(q) = Ae™ =21 (3.63)
that represents this state in the position representation. To complete the picture we need
to specify the normalization constant A. Correct normalization requires that

w0, = [ " dg 1do(@) = AP / Tdget 1, (3.64)

— 00 —00
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The integral appearing in this condition is well known and has the value /7, from which
we deduce that the correctly normalized ground state wave function has the form

Bolq) = 7 Ve H (3.65)
It is also possible to express this in terms of the “real” position variable z, rather than the

dimensionless variable ¢ = /##z. This is most easily done by noting that, in general,
normalization requires that

1= [lon@Pda= [ I6,ate)PGhdo = [ 16,0 (3.66)

ba(0) = ala@ 22 = () g oo (361)

Making the appropriate substitution gives the ground state wave function

Po(x) = (%)l/4 exp (—%x"’) : (3.68)

so that

The remaining eigenstates can be generated from the ground state by repeated application
of the raising operator at. Unfortunately, a simple-minded application of a*t to the ground
state does not generate normalized eigenstates. To see this, let us denote by |n) and [n+1)
the square-normalized eigenstates of N with eigenvalues n and n + 1, respectively. Now
our earlier argument shows that state a™|n) is also an eigenstate of N with eigenvalue
n + 1, and so must be at least proportional to the state |n 4 1), since the eigenstates of
N are nondegenerate. Thus, there exists a constant A, such that

atn) = A\p|n + 1) (3.69)
Taking the norm of this vector reveals that
(n|aa®|n) = |\, |? (3.70)
or, using the fact that aa™ = N + 1, we see that
Ao =n+1. (3.71)

Fixing the relative phase of our basis vectors such that )\, is real and positive, we obtain
An = v/n + 1, from which we deduce the basic relation

atin) =vn+1n+1) (3.72)

between basis vectors with neighboring energy eigenvalues. For the purpose of construct-
ing these states it is useful to write this relation in the equivalent form

In) = Cﬁn—ﬁ_l) (3.73)

By recursion, this allows us to express the state |n) in terms of the ground state, i.e.,

gy @1 (@)n-2)  (ah)"0)
) =—7— = D v (3.74)
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or

n) = —— -/ (3.75)

To find the wave functions which represent the eigenstates in the position representation
we project this onto the basis vectors |g) of that representation

$nld) = <Qn>_WT)!”0>
- \/% (q_diq> Po(4) (3.76)

or using the explicit form for the normalized ground state wave function we find that

7'&'_1/4 d\" _1g?
d)"(q)_W(q_d_q) e 2% . (3.77)

Thus, we have an explicit prescription for calculating the wave function for the state n in
the position representation. Another useful form of this follows from the relation

atn) =vn+1n+1) (3.78)

derived earlier, from which it follows that
In+1) = (3.79)

which becomes, in the position representation,

I S )
) = (- L) e (3.80

We thus have a recursion relation

1 1 d
@) = o= 75 (4 35 ) 80 (3.81)

which allows each wave function to be constructed from the one preceding it.

Examples: We derive below the first three harmonic oscillator wave functions

1. For n = 0 we have ,
Po(q) = (ql0) =7~/ 4em0 /2

2. Applying the prescription above we find that for n =1

P1(q) = (ql1) = \%% (q - diq> (W—1/4e—q2/2)

n—1/4 2
= (2q) e /2
V2
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3. For n =2, we have

) = a2 = = (- 5 ) (T o) e?)

/4 .
™ 2

= 2¢° — 1) e 9 /2

/2 (29 )

These wave functions are graphed below as solid lines, with the associated proba-
bility densities |¢,,|* indicated as dashed lines.

¢,,(q) for n = 2.
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The wave function ¢,,(¢) is customarily expressed in terms of the nth order Hermite
polynomial H,,(z), defined through the relation

Hy(2)

Il
o
n
[V
~
[\~
VR
N
\
QU
Sl
N~~~
3
m‘
n
[V
~
[\~

= (~1)"e"——e® (3.82)

where the latter form follows from the first 1:;y sirglply writing out the powers in the first,
inserting factors of unity in the form 1 = e~* /2¢* /2 between each factor, and performing
a little algebra. With this definition, the wave function ¢,,(¢) can be written

al) = T () (389
n\qd) = NoT n{d . .

Since the Hamiltonian commutes with the parity operator (the potential is symmetric),
and because the harmonic oscillator spectrum is nondegenerate, it follows that the eigen-
states of H are also eigenstates of the parity operator, which means that they are either
even or odd. The parity of the nth harmonic oscillator state is (—1)™, which makes states
with even n symmetric and states of odd n antisymmetric, as suggested by the figures. The
probability density p,,(¢) = |#,,(q)|* associated with each eigenstate is an even function.
As a consequence, we can anticipate that the expectation value of the position operator
q in each eigenstate vanishes.

By assumption, the basis states of the energy representation, being eigenstates of a Her-
mitian operator, form a complete ONB for the space of a single particle moving in one
dimension. Thus, we can automatically write down the completeness and orthonormality
relations appropriate to this set of states

D fnn| =1 (nn') = 8. (3.84)

This allows us to expand an arbitrary state of the system. Thus an arbitrary state |¢) of
a particle moving in one-dimension can be written in the form

) = h|n) (3.85)

and the spatial wave function (q) of such a state can be expanded in the eigenfunctions
derived above, i.e.,

Ug) = (glv) =D vuldn) = > ¥,e.(a), (3.86)

with
w:mw:/@ﬁ@ww (3.87)

3.1.4 Action of Various Operators in the Energy Representation

In this section we consider the action and expansion of various operators in the basis of
energy eigenstates developed above. We first have the obvious relations encountered dur-
ing our derivation. For example, the action of the number operator in this representation
is particularly simple, since these states are eigenstates of N. Thus,

N|n) = n|n) (3.88)
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so that
(W'|Nn) =n(n'|n) = nép n (3.89)

Hence it follows that

N = Z |n) n (n| (3.90)
n=0

Similarly, the harmonic oscillator Hamiltonian has the action

Hin) = (n + %)hw\m (3.91)
so that .
and thus
= 1
H= m; [n) (n+3) (1l (3.93)

The action of the annihilation and creation operators a and a® are also easily deduced.
We have already derived the relation

at|n) =vn+1n+1) (3.94)
from which we deduce the matrix elements

(n'|a*|n) = Vn+1{(n'In+ 1) = Vn + 16,41 (3.95)

and so
at =) In+1) Vn+1(n| (3.96)
n=0

which is clearly not diagonal, even though it is represented by a single index. Taking the
adjoint of this last relation gives an expansion for the annihilation operator

a=Y " |n)Vn+T{n+1]=>Y" |n—1)yn (n, (3.97)
n=0 n=0

where we have shifted the summation index in the last form. From this it follows that

aln) = /njn — 1) (3.98)

which shows that the operator a lowers the state to the next lowest eigenvalue, but
multiplies by y/n in the process.

From these we can derive relations for the position and momentum operators ¢ = (a* +
a)//2 and p = i(at — a)/+/2. Thus, for example, we deduce that

1

aln) = (@ +@)n) = % [Va T+ 1)+ Van — 1)] (3.99)
(n’|gln) = % [V 41 6n n1+ V1 b i) (3.100)
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=> [In+1)vVa+I(n + In—1)vanl], (3.101)
n=0

and that

pln) = %(Gﬁ —a)n) = % [VaFiln+1) — V- 1)] (3.102)

(n’|pln) = ﬁ [VAF T bt — v/ St (3.103)
- % SNolln+1) Vati{l — |n—1)va (], (3.104)
n=0

Thus, the operators N and H are diagonal in the energy representation, while the
operators a, at, g, and p connect each energy eigenstate to the states immediately above
or below it. The matrices representing these operators are straightforward to construct,
and appear below

0O 0 0 0 0
0 1 0 0 0
0 0 2 0 0
N=19 0 0 3 o0
0 0 0 0 4
hw/2 0 0 0 0
0 3hw/2 0 0 0
0 0 5hw/2 0 0
H=19 o 0 Thw/2 0
0 0 0 0 9hw /2
0O 0 0 0 0
VI 0 0 0 0
N V2.0 0 0
0 0 V3 0 0
0 0 0 V4 0
0 V10 0 0
0 0 V2 0 0
0 0 0 V30
““1o o o o va
0O 0 0 0 0
0 V1/2 0 0 0
/2 0 VAR 0
P Y vio0 V3/2 0
0 0 3/2 0 4/2
0 0 0
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0 —i\/1/2 0 0 0
i/1/2 0 —iv1 0 0
0 iv1 0 —iy/3/2 0

p— . )
0 0 i\/3/2 0 —i\/4/2
0 0 0 in/4/2 0

It is clear from the structure of these last two operators, therefore, that the mean position
and momentum associated with any eigenstate vanishes, i.e.,

(q) = (nlgln) =0

(p) = (n|p|n) =0,

a fact that also follows from the symmetry (and parity) of the wave functions.

It is also interesting to consider the spread of values associated with position or momentum
measurements on the system when it is in an energy eigenstate. Thus we consider the
mean value of ¢? in the energy eigenstate |n), i.e.,

(@) = {nleln) = 3l +a)(a® + )

1
§<n\a+a+ +ata+aat + aaln)

We note that in any expression involving the expectation value of a product of a’s and
at’s with respect to an energy ecigenstate, the only terms that can survive are those with
an equal number of a’s and at’s

(nlatat|n) = Vn+1vn+2{nln+2)=0
(nlaaln) = Vnvn—1{nn—-2)=0
(nlaa*n) = (Al(N+ D) =n+1
)

(nlataln) = (n|Nln)=n

Thus, we find that

(n+ 1) 0] =nt 3

(¢*) = 5

N | —

so the uncertainty in position

Aq=/(g?) = n+%

increases with the quantum number n. Putting back the dimensional quantities this can

be written
1 h
AX = (n + —> —

2 ) mw
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Similarly, we can consider the second moment of the momentum

1
(") = (lp?n) = —5{nl(a* - a)(a* —a)In)
= %(n\a"'a"’ —ata—aa™ + aaln)
2

so that the uncertainty is
v 1

or, in terms of the real momentum,

The uncertainty product is therefore

1.1
= — > —_ = =
AgAp =n+5 25 = 5[((g,p])]
in terms of ¢ and p or
1 h 1
= — > - = =
AXAP <n+ 2> h > 5 2|<[X,P}>|

in terms of X and P. In either case we see that for the ground state of the harmonic
oscillator, n = 0, the lower bound provided by the uncertainty principle becomes an
equality.

3.1.5 Time Evolution of the Harmonic Oscillator

Having solved the eigenvalue problem for the time-independent harmonic oscillator Hamil-
tonian we have essentially solved the time evolution problem as well. For example, we can
immediately construct the evolution operator U(t) = exp(—iHt/h), which is diagonal in
the energy representation and in the present problem is given by the relation

U(t) = 3 [nhe= B
n=0
_ 1
where E,, = (n + 5)hw, so
U(t) _ e—iwt/? Z ‘n>e—inwt<n‘.
n=0

Note that the zero point energy %hw gives rise to an overall phase factor. If the system
is initially in the state |¢(0)) at time ¢ = 0, associated with the wave function (g,0) =
(g)¥(0)) then its state at time ¢ is represented by the expansion

W) = U@W(©) =e ™2 " n)e™" (n]1(0))
n=0

e—iwt/? Z ¢n(0) e—inwt|n>
n=0
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and the wave function can be written as an expansion
P(g,t) = (qlv(t)
_ e—iwt/? Z ¢n(0) e inwt <q|n>
n=0

_ e—iwt/? Z ¢n(0) e—inwtd)n (Q)
n=0

in the harmonic oscillator eigenfunctions derived earlier, with expansion coefficients ob-
tainable through the relation

60) = (nw(0) = / da(nlq){gl(0))
- / dacbn(0)(a,0).



