
Chapter 8
TIME DEPENDENT PERTURBATIONS: TRANSITION THEORY

8.1 General Considerations

The methods of the last chapter have as their goal expressions for the exact energy eigen-
states of a system in terms of those of a closely related system to which a constant pertur-
bation has been applied. In the present chapter we consider a related problem, namely,
that of determining the rate at which transitions occur between energy eigenstates of a
quantum system of interest as a result of a time-dependent, usually externally applied,
perturbation. Indeed, it is often the case that the only way of experimentally determining
the structure of the energy eigenstates of a quantum mechanical system is by perturbing
it in some way. We know, e.g., that if a system is in an eigenstate of the Hamiltonian,
then it will remain in that state for all time. By applying perturbations, however, we
can induce transitions between di¤erent eigenstates of the unperturbed Hamiltonian. By
probing the rate at which such transitions occur, and the energies absorbed or emitted
by the system in the process, we can infer information about the states involved. The
calculation of transition rates for such situations, and a number of others of practical
interest are addressed in this chapter.

To begin, we consider a system described by time-independent Hamiltonian H0
to which a time-dependent perturbation V̂ (t) is applied. Thus, while the perturbation is
acting, the total system Hamiltonian can be written

H(t) = H0 + V̂ (t): (8.1)

It will be implicitly assumed unless otherwise stated in what follows that the perturbation
V̂ (t) is small compared to the unperturbed Hamiltonian H0; if we want to study the
eigenstates of H0 we do not want to change those eigenstates drastically by applying a
strong perturbation. In fact, we will often write the perturbation of interest in the form

V̂ (t) = ¸V (t) (8.2)

where ¸ is a smallness parameter that we can use to tune the strength of V̂ . We will
denote by fjnig a complete ONB of eigenstates of H0 with unperturbed energies "n; so
that, by assumption

H0jni = "njni
X
n

jnihnj = 1 hnjn0i = ±n;n0 : (8.3)

Our general goal is to calculate the amplitude (or probability) to …nd the system in a
given …nal state jÃf i at time t if it was known to be in some other particular state jÃii
at time t = t0: Implicit in this statement is the idea that we are going to let the system
evolve from jÃii until time t and then make a measurement of an observable A of which
jÃf i is an eigenstate (e.g., we might be measuring the operator Pf = jÃf ihÃf j). A little
less generally, if the system was initially in the unperturbed eigenstate jnii of H0 at t0;
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we wish to …nd the amplitude that it will be left in (or will be found to have made a
transition to) the eigenstate jnf i at time t > t0; where now the measurement will be that
of the unperturbed Hamiltonian itself. We note in passing that if we could solve the full
Schrödinger equation

i~ d
dt
jÃi(t)i = H(t)jÃi(t)i (8.4)

for the initital condition jÃi(t0)i = jÃii of interest, the solution to the general problem
would be immediate. The corresponding transition amplitude would then just be the
inner product Ti!f (t) = hÃf jÃi(t)i and the transition probability would be

Wi!f = jTi!f j2 =
¯̄hÃf jÃi(t)i¯̄2 = hÃi(t)jÃf ihÃf jÃi(t)i: (8.5)

It is useful, in what follows, to develop our techniques for solving time-dependent problems
of this kind in terms of the evolution operator U(t; t0), or propagator, which evolves the
system over time

jÃ(t)i = U(t; t0)jÃ(t0)i:
We recall a few general features of the evolution operator

1. It is Unitary, i.e.,
U+(t; t0) = U

¡1(t; t0) = U(t0; t): (8.6)

2. It obeys a simple composition rule

U(t; t0) = U(t; t
0)U(t0; t0): (8.7)

3. It is smoothly connected to the identity operator

lim
t!t0

U(t; t0) = 1: (8.8)

4. It obeys an operator form of the Schrödinger equation

i~ d
dt
U(t; t0) = H(t)U(t; t0): (8.9)

5. If H(t) = H0 is independent of time, then the evolution operator takes a particularly
simple form, i.e.,

U = U0(t; t0) = e
¡iH0(t¡t0)=~ : (8.10)

By comparison with what we have written above, the transition amplitude Ti!f
can be expressed as the matrix element of the evolution operator between the initial and
…nal states, i.e.,

Ti!f = hÃf jÃi(t)i = hÃf jU(t; t0)jÃii; (8.11)

or, if we are interested in transitions between eigenstates of H0; we have

Tn!m = hmjU(t; t0)jni Wn!m = jhmjU(t; t0)jnij2 (8.12)

Typically, of course, it is the presence of the perturbation V̂ (t) that renders the
full Schrödinger equation intractable. Indeed, when ¸ = 0; each eigenstate of H0 evolves
so as to acquire an oscillating phase

U0(t; t0)jni = e¡i!n(t¡t0)jni (8.13)
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but no transitions between di¤erent eigenstates occur:

Wnm = ±nm:

It is the perturbation V̂ (t) that allows the system to evolve into a mixture of unperturbed
states, an evolution that is viewed as inducing transitions between them.

Our goal, then, is to develop a general expansion for the full evolution operator
U(t; t0) in powers of the perturbation, or equivalently, in powers of the small parameter
¸. To this end, it is useful to observe that the unperturbed evolution of the system is
not the goal of our calculation, involving as it does all of the unperturbed eigenenergies
of the system. Indeed, that problem is assumed to have been completely solved. It would
be convenient, therefore, to transform to a set of variables that evolve, in a certain sense,
along with the unperturbed system, so that we can focus on the relatively slow part of the
evolution induced by the weak externally applied perturbation, without worrying about
all the rapid oscillation of the phase factors associated with the evolution occuring under
H0. The idea here is similar to tranforming to a rotating coordinate system to ease the
solution of simple mechanical problems. In the present context, we expect that in the
presence of a small perturbation the unperturbed evolution changes from the form given
above into a mixture of di¤erent states, which we can generally write in the form

U(t; t0)jni =
X
m

Ám(t)e
¡i"m(t¡t0)=~ jmi (8.14)

where for small enough ¸ the expansion coe¢cients Ám(t) are, it is too be hoped, slowly
varying relative to the rapidly oscillating phase factors associated with the unperturbed
evolution. As suggested above, we can formally eliminate this fast evolution generated by
H0 by working in the so-called “interaction picture”.

Recall that our axioms of quantum mechanics were developed in the Schrodinger
picture in which the state of the system evolves in time

jÃSch(t)i = U(t; t0)jÃ(t0)i (8.15)

while fundamental observables of the system are associated with time-independent Her-
mitian operators A = ASch. By contrast, it is possible to develop a di¤erent formulation
of quantum mechanics, the so-called Heisenberg picture, in which the state of the system

jÃH(t)i = jÃ(t0)i = U+(t; t0)jÃSch(t)i (8.16)

remains …xed in time, but observables are associated with time-evolving operators

AH(t) = U
+(t; t0)ASchU(t; t0): (8.17)

The kets and operators of one picture are related to those of the other through the unitary
transformation induced by the evolution operator U(t; t0) and its adjoint, and preserve
the mean values, and hence predictions, of quantum mechanics in the process.

In this same spirit, it is possible to develop a formulation in which some of the
time evolution is associated with the kets of the system and some of it associated with the
operators of interest. An interaction picture of this sort can be de…ned for any system in
which the Hamiltonian can be written in the form H = H0 + V (t); with the state vector
of this picture

jÃI(t)i = U+0 (t; t0)jÃsch(t)i (8.18)

being de…ned relative to that of the Schrödinger picture through the inverse of the unitary
transformation

U0(t; t0) = exp[¡iH0(t¡ t0)=~] (8.19)
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which governs the system in the absence of the perturbation. This form for the state
vector suggests that the inverse (or adjoint) operator U+ acts on the fully-evolving state
vector of the Schrödinger picture to “back out” or undo the fast evolution associated with
the unperturbed part of the Hamiltonian. In a similar fashion, the operators

AI(t) = U
+
0 (t; t0)ASch(t)U0(t; t0); (8.20)

of the interaction picture are related to those of the Schrodinger picture through the same
corresponding unitary transformation, but as applied to operators (we have included a
time dependence in the Schrodinger operator ASch(t) on the right to take into account any
intrinisic time dependence exhibited by such operators, as occurs, e.g., with a sinusoidally
applied perturbing …eld).

Naturally, we can de…ne an evolution operator UI(t; t0) for the interaction picture
that evolves the state vector jÃI(t)i in time, according to the relation

jÃI(t)i = UI(t; t0)jÃI(t0)i (8.21)

Using the de…nitions given above we deduce that

UI(t; t0) = U
+
0 (t; t0)U(t; t0) (8.22)

or, multiplying this last equation through by U0(t; t0); we obtain a result for the full
evolution operator

U(t; t0) = U0(t; t0)UI(t; t0): (8.23)

in terms of the evolution operators U0 and UI :
To obtain information about transitions between the unperturbed eigenstates of

H0; then, we need the transition amplitudes

Tn!m = hmjU(t; t0)jni = hmjU0(t; t0)UI(t; t0)jni = e¡i!m(t¡t0)hmjUI(t; t0)jni (8.24)

and transition probabilities

Wn!m = jTn!mj2 = jhmjUI(t; t0)jnij2 : (8.25)

We see, therefore, that the evolution operator of the interaction picture does indeed
contain all information about transitions induced between the unperturbed eigenstates.
The evolution equation obeyed by UI(t; t0) is also straightforward to obtain. By taking
derivatives of U(t; t0) we establish (with t0 …xed) that

dU

dt
=
dU0
dt
UI + U0

dUI
dt
: (8.26)

But clearly
dU

dt
=
¡i
~
[H0 + V̂ (t)]U =

¡i
~
[H0 + V̂ (t)]U0UI (8.27)

and
dU0
dt

=
¡i
~
H0U0: (8.28)

From these last three equations we deduce that

i~
dUI
dt

= U+0 V̂ (t)U0UI (8.29)

which we can write as

i~dUI
dt

= V̂I(t)UI : (8.30)
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Thus, the evolution operator in the interaction picture evolves under a Schrödinger equa-
tion that is governed by a Hamiltonian

V̂I(t) = U
+
0 V̂ (t)U0 (8.31)

that only includes the perturbing part of the Hamiltonian (the interaction), as represented
in this picture. Since UI(t; t0) shares the limiting behavior

lim
t!t0

UI(t; t0) = lim
t!t0

U+0 (t; t0)U(t; t0) = 1 (8.32)

of any evolution operator, it obeys the integral equation that we derived earlier for evo-
lution operators governed by a time-dependent Hamiltonian, i.e.,

UI(t; t0) = 1¡ i

~

Z t

t0

dt0 V̂I(t0)UI(t0; t0) (8.33)

and hence can be expanded in the same way in powers of the perturbation, i.e.,

UI(t; t0) =
1X
k=0

U
(k)
I (t; t0) (8.34)

where

U
(k)
I (t; t0) =

µ
1

i~

¶k Z t

t0

dtk ¢ ¢ ¢
Z t2

t0

dt1 V̂I(tk)V̂I(tk¡1) ¢ ¢ ¢ V̂I(t1)

=

µ
1

i~

¶k Z t

t0

dtk ¢ ¢ ¢
Z t2

t0

dt1 U0(t; tk)V̂ (tk)U0(tk; tk¡1)V̂ (tk¡1) ¢ ¢ ¢

¢ ¢ ¢ V̂ (t2)U0(t2; t1)V̂ (t1) (8.35)

Combining this with (8.23) it is possible to deduce a similar expansion

U(t; t0) =
1X
k=0

U(k)(t; t0) (8.36)

U(k)(t; t0) =

µ
1

i~

¶k Z t

t0

dtk ¢ ¢ ¢
Z t2

t0

dt1 U0(t; tk)V̂ (tk)U0(tk; tk¡1)V̂ (tk¡1) ¢ ¢ ¢

¢ ¢ ¢ V̂ (t2)U0(t2; t1)V̂ (t1)U0(t1; t0) (8.37)

for the full evolution operator. Note the structure of this is of a sum (integral) over all
processes whereby the system evolves under H0 without perturbation from t0 to t1, at
which time it is acted upon by the perturbation V̂ (t1); then evolves without perturbation
from t1 to t2; at which time it is acted upon by the perturbation V̂ (t2); and so on. The kth
order contribution arises from all those those processes in which the system is scattered
(or perturbed) exactly k times between t0 and t; with the particular times at which those
perturbations could have acted being integrated over. It is this structure that forms
the basis for diagrammatic representations for the perturbation process, such as those
introduced in the context of electrodynamics by Feynman.

If the perturbation is small enough, this formal expansion for the propagator of
the system can be trunctated after the …rst order term, and as such allows us to address
in a perturbative sense the problem originally posed. For example, if the system is at
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t = t0 initially in an eigenstate jÃ(t0)i = jni of the unperturbed Hamiltonian, the results
of the above expansion reveal that the state of the system at time t will be given by the
expansion

jÃ(t)i =
X
m

Ãm(t)jmi (8.38)

where

Ãm(t) = hmjU(t; t0)jÃ(t0)i = hmjU(t; t0)jni
= hmjU0(t; t0)UI(t; 0)jni = e¡i!m(t¡t0)hmjUI(t; t0)jni: (8.39)

Truncating the expression for UI at …rst order

UI(t; t0) = 1¡ i

~

Z t

t0

dt0 V̂I(t0): (8.40)

and inserting the result into the expression for Ãm; keeping the lowest-order non-zero
result for each coe¢cient, we obtain a basic equation of time-dependent perturbation
theory:

Ãm(t) = e
¡i!m(t¡t0)

·
±n;m ¡ i

~

Z t

t0

dt0 Vmn(t0)ei!mn(t
0¡t0)

¸
(8.41)

where !mn = !m¡!n is the Bohr frequency associated with the transition between levels
n and m. Clearly in this last expression, the …rst term, involving the Kronecker delta
function is associated with the amplitude for the system to be found in the initial state,
while the remaining terms give the desired (…rst-order) transition amplitudes

Tn!m = ¡ i~e
¡i!m(t¡t0)

Z t

t0

dt0 Vmn(t0)ei!mn(t
0¡t0) (8.42)

from which follow the corresponding transition probabilities

Wn!m = ~¡2
¯̄̄̄Z t

t0

dt0 Vmn(t0)ei!mnt
0
¯̄̄̄2
: (8.43)

For a perturbation that starts in the far distant past and dissapears in the far distant
future, these results reduce to a particulalry simple form, in which the total transition
probability can be written

Wn!m = ~¡2
¯̄̄̄Z 1

¡1
dt0 Vmn(t0)ei!mnt

0
¯̄̄̄2
=
2¼

~2
¯̄̄
~Vmn(!mn)

¯̄̄2
(8.44)

where
~Vmn(!mn) =

1p
2¼

Z 1

¡1
dt0 Vmn(t0)ei!mnt

0
(8.45)

is simply the Fourier transform of the perturbing matrix element connecting the two
states involved in the transition, evaluated at a frequency !mn corresponding to the
energy di¤erence between the two states involved.

As an example, we consider a 1D harmonic oscillator

H0 =
P 2

2m
+
1

2
m!2X2 (8.46)

which is initially (at t = ¡1) in its ground state when a perturbing electric …eld pulse is
applied of the form

V̂ (t) = ¡f(t)X: (8.47)
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In this expression, f(t) = eE(t) represents the spatially uniform, but time-dependent
force exerted by the …eld on the charged harmonically-bound particle. We might, e.g.,
example take a pulse envelope

f(t) = f0e
¡t2=¿2 (8.48)

with a Gaussian shape that peaks at a time that for convenience we have set equal to
t = 0. Our goal is to …nd the the probability that the particle is left by this pulse in the
nth excited state. Provided the pulse strength is su¢ciently low, the transition probability
can then be written

W0!n =
2¼

~2
¯̄̄
~Vn;0(n!)

¯̄̄2
(8.49)

where
~Vn;0(!) =

Xn;0p
2¼

Z 1

¡1
dt0 f(t0)ei!t

0
(8.50)

and

Xn;0 = hnjXj0i =
r

~
2mw

±n;1: (8.51)

Clearly, the …rst-order transition amplitude vanishes except for the …rst excited state, i.e.,
n = 1. For the Gaussian pulse, evaluation of the Fourier integral leads to the result that
long after the pulse has passed through, the probability for the charge to be excited to
the n = 1 state is

W0!1 =
f20¼¿

2

2m~!
exp

¡¡!2¿2=2¢ : (8.52)

Note the transition probability becomes exponentially small as the duration of the pulse
(as measured by the parameter ¿) increases, and that there is a maximum in the transition
probability as a function of ¿ . For this perturbative result to be valid, the strength f0 of
the …eld must be small enough that the transition probability W0!1 is small compared
to unity.

8.2 Periodic Perturbations: Fermi’s Golden Rule

An important class of problems involve perturbations that are harmonic in time, and
expressible, therefore, in the form

V̂ (t) =
£
V e¡i!t + V +ei!t

¤
µ(t): (8.53)

Here, µ(t) is the Heaviside step function that describes the initial application of the per-
turbation at t = 0: Such a perturbation could describe, e.g., an electromagnetic wave
applied to the system at t = 0; with a wavelength much large than the system size. We
consider here the situation in which the perturbation is simply left on and calculate, after
all the transients of the system have died down, the steady-state transition rate

¡n!m = lim
t!1

dWn!m
dt

(8.54)

which gives the number of transitions induced per unit time by the applied perturbation
between an initial state jni and a …nal state jmi. Using our …rst order result (8.43), the
transition probability for this situation can be written in the form

Wn!m(t) =
1

~2

¯̄̄̄Z t

0

£
Vmne

i­+t + V ¤nme
i­¡t

¤
dt

¯̄̄̄2
(8.55)
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in which we have de…ned the quantities

­+ = !m ¡ !n ¡ ! (8.56)

and
­¡ = !m ¡ !n + !:

Performing the integrals, we …nd

Wn!m(t) =
1

~2

¯̄̄̄
¯Vmn

¡
ei­+t ¡ 1¢

2i (­+=2)
+
V ¤nm

¡
ei­¡t ¡ 1¢

2i (­¡=2)

¯̄̄̄
¯
2

=
1

~2

¯̄̄̄
Vmne

i­+t sin (­+t=2)

­+=2
+
V ¤nmei­¡t sin (­¡t=2)

­¡=2

¯̄̄̄2
(8.57)

which reduce to

Wn!m(t) =
1

~2

½
jVnmj2 sin

2 (­+t=2)

(­+=2)2
+ jV ¤nmj2

sin2 (­¡t=2)
(­¡=2)2

¾
+

2

~2
Re

½
ei!mntVmnV

¤
nm

sin (­+t=2)

(­+=2)

sin (­+t=2)

(­+=2)

¾
: (8.58)

To put this in a form useful for exploring the long time limit, we now multiply and divide
the …rst two terms by 2¼t and the last term by ¼2 to obtain

Wn!m(t) =
2¼ jVnmj2 t

~2

½
1

¼

sin2 (­+t=2)

­2+t=2
+
1

¼

sin2 (­¡t=2)
­2¡t=2

¾
+
2¼2 jVmnV ¤nmj

~2

·
1

¼

sin (­+t=2)

(­+=2)

¸·
1

¼

sin (­¡t=2)
(­¡=2)

¸
: (8.59)

This form is convenient, because in the long time limit, the transient oscillations in the
bracketed functions tend to die away, and they approach Dirac ±-functions as T ! 1.
Speci…cally, it is straightforward to establish the following representations of the Dirac
±-function

±(!) = lim
T!1

±1(T; !) = lim
T!1

1

¼

sin2 (!T=2)

!2T=2
(8.60)

±(!) = lim
T!1

±2(T;!) = lim
T!1

1

¼

sin (!T=2)

!=2
(8.61)

by showing that the functions ±(T; !) have, as T !1; the appropriate limiting behavior
(going to 1 for ! = 0; and going to 0 for ! 6= 0; respectively), and that their integrals
both approach unity for T ! 1: This allows us to write, for times t much greater than
typical evolution times of the unperturbed system

Wn!m(t) =
2¼ jVnmj2 t

~2
f±(­+) + ±(­¡)g+ 2¼

2 jVmnV ¤nmj
~2

±(­+)±(­¡): (8.62)

Clearly, the product ±(­+)±(­¡) = ±(!m ¡ !n + !)±(!m ¡ !n ¡ !) vanishes, since the
±-functions have di¤erent arguments. This leaves the …rst two terms, one of which must
always vanish. If the …nal state has an energy greater than the initial, so that !m = !n+!,
then the corresponding transition probability

Wn!m(t) =
2¼ jVnmj2 t

~2
±(!m ¡ !n ¡ !) (8.63)
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describes the resonant absorbtion of a quantum ¢" = ~! of energy; if the …nal state has
a lower energy than the initial one, so that !m = !n ¡ !; the transition probability

Wn!m(t) =
2¼ jVnmj2 t

~2
±(!m ¡ !n + !) (8.64)

describes the stimulated emission of a quantum ¢" = ~! of energy. The …nal form of the
transition rate for these processes can then be written

¡n!m =
2¼ jVnmj2

~2
±(!m ¡ !n § !) = 2¼ jVnmj2

~
±("m ¡ "n § ~!): (8.65)

This is the simple form of what is referred to as Fermi’s golden rule. Since the ±-functions
makes the transition rate formally in…nite or zero, this expression has meaning only when
there is a distribution of …nal states having the right energy. Indeed, if we formally sum
the transition rate ¡n!m over all possible …nal states m, we can write the total transition
probability in the form

¡n =
X
m

¡n!m =
X
m

2¼

~
jVm;nj2 ±("m ¡ "n § ~!)

=
2¼

~

Z
d" ±("¡ "n § ~!)

X
m

jVmnj2 ±("¡ "m): (8.66)

If Vmn is approximately a constant over those states of the right energy to which transitions
can occur, the integral simpli…es and we end up with the second form of Fermi’s golden
rule

¡n =
2¼

~
jVmnj2 ½("n § ~!) = 2¼

~
jVmnj2 ½("f ); (8.67)

which involves the so-called density of states

½(") =
X
m

±("¡ "m) (8.68)

evaluated at the …nal energy "f = "n § ~! to which the transition can occur. Note that
the density of states (or state distribution function) so de…ned has the property thatZ "2

"1

½(")d" = N("1; "2) (8.69)

gives the number of states of the system with energies lying between "1 and "2: Typically,
situations in which Fermi’s golden rule applies are those where the …nal set of states is
part of a continuum (e.g., when a photon is given o¤ or absorbed, so that there are a
continuum of possible directions associated with the incoming or outgoing photon), and
thus the density of states function ½(") is to be considered a continuous function of the
…nal energy.

As an example of the application of Fermi’s golden rule, and to see how densities
of states of the sort typically encountered are constructed, we consider a ground state
hydrogen atom, with a single bound electron described by the wave function

Ã0(r) =
¡
¼a30

¢¡1=2
e¡r=a0 ; (8.70)

to which a harmonic perturbing potential

V̂ (~r; t) = V0 cos(~k0 ¢ ~r ¡ !t); (8.71)
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is applied, in which V0 is a constant having units of energy, and ~k0 = k0ẑ: (The form
is clearly suggestive of an electromagnetic perturbation of some sort.) Assume that the
perturbation causes ionizing transitions in which the initially bound electron ends up
in a “free particle state” with …nal wavevector ~k: We are interested in calculating the
“di¤erential ionization rate” d¡0(µ; Á)=d­ for transitions to free-particle ~k-states passing
through an in…nitesimal solid angle d­ centered along some particular direction (µ; Á): To
proceed, we note that the perturbation can be written in the form

V̂ (t) = V e¡i!t + V +ei!t (8.72)

where

V =
1

2
V0e

i~k0¢~r: (8.73)

From Fermi’s golden rule, irreversible transitions in which a quantum ~! is absorbed
(stimulated absorption) can only occur to states with …nal energies "f = "i+~! = ~!¡"0:
This …nal energy is assumed to be associated with the …nal kinetic energy "f = ~2k2=2m
of the ionized electron, which requires the …nal wavevector to have magnitude

k = kf =

r
2m (~! ¡ "0)

~2
=

r
2m (~! ¡me4=2~2)

~2
: (8.74)

The Fermi golden rule rate for transitions to a plane wave state of wavevector ~k having
this magnitude can be written

¡0!~k =
2¼

~

¯̄̄
V~k;0

¯̄̄2
±("k¡"f ) = 2¼

~

¯̄̄
V~k;0

¯̄̄2
±("k¡~!+"0) = 2m¼

~3k

¯̄̄
V~k;0

¯̄̄2
±(k¡kf ) (8.75)

where we have used the result

±

·
~2

2m

¡
k2 ¡ k2f

¢¸
=
m

~2k
±(k ¡ kf ): (8.76)

Note that this last ±-function involves only the magnitude of the wavevector. The transi-
tion rate d¡0(µ; Á) into all k-states passing through an in…nitesimal solid angle d­ along
(µ; Á) is obtained by summing over all such …nal states, i.e.,

d¡0(µ; Á) =
2m¼

~3k

¯̄̄
V~k;0

¯̄̄2 X
~k2d­

±(k ¡ kf ): (8.77)

where the sum really is a symbolic way of writing an integral over all those wavevec-
tors passing through the solid angle d­ at (µ; Á): Working in the spherical coordinate
representation in k-space this can be written in the formX

~k2d­
±(k ¡ kf ) =

Z 1

0

dk k2d­ ½(~k)±(k ¡ kf ) (8.78)

where ½(~k) = ½(k; µ; Á) is the density of plane wave states with wavevector ~k; i.e., the
number of states per unit volume of k-space. To obtain this quantity, it is convenient in
problems of this sort to take the entire system to be contained in a large box of edge L;
with normalized plane wave states

h~rj~ki = Á~k(~r) = L¡3=2ei
~k¢r (8.79)
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that satisfy periodic boundary conditions at the edges of the box. The allowed wavevectors
in this situation are then of the form

~k =
2¼

L
(nx{̂+ ny |̂+ nzk̂) (8.80)

where nx; ny; and nz are integers. The points in k-space thus form a regular cubic lattice
with edge length 2¼=L; so there is exactly one state in every k-space unit cell volume of
(2¼=L)3: The resulting density of states in k space

½(~k) =

µ
L

2¼

¶3
(8.81)

is uniform, therefore, independent of ~k. Thus, the density of “ionized” states along d­
takes the formX

k02d­
±(k0 ¡ k) =

Z 1

0

dk k2d­ ½(~k)±(k ¡ kf ) =
µ
L

2¼

¶3
k2d­: (8.82)

Putting this into the expression given above for d¡0(µ; Á), and dividing through by d­;
we obtain the following expression for the “di¤erential ionization rate”

d¡0(µ; Á)

d­
=
2m¼k

~3
¯̄̄
V~k;0

¯̄̄2
½(~k)d­ =

mL3k

4¼2~3
¯̄̄
V~k;0

¯̄̄2
(8.83)

where it is understood at this point that
¯̄̄
~k
¯̄̄
= kf as given above. This quantity gives the

number of transitions per unit time per unit solid angle along the speci…ed direction. To
complete the calculation we need to evaluate the matrix element

V~k;0 = h~kjV jÃ0i =
V0
2L3=2

Z
d3r e¡i~k¢~rei~k0¢~rÃ0(r)

=
V0
2L3=2

Z
d3r e¡i(~k¡~k0)¢~rÃ0(r) =

V0
2L3=2

~Ã0(
~k ¡ ~k0) (8.84)

where, after a little hard work we …nd that

~Ã0(~q) =
1p
¼a30

Z
d3r e¡i~q¢~re¡r=a0 =

q
¼a30

8

(1 + a20q
2)2

(8.85)

Combining these results we obtain, …nally:

d¡0(µ; Á)

d­
=

16mV 20 a
2
0

¼~3
ka0

(1 + a20j~k ¡ ~k0j2)4

=
16mV 20 a

2
0

¼~3
ka0

(1 + a20(k
2 ¡ 2kk0 cos µ + k20))4

(8.86)

which is symmetric about the z-axis (independent of Á) and has a maximim along the z
direction associated with the wavevector ~k0 that characterizes the perturbation (suggest-
ing the absorption of momentum from the plane wave perturbation). Note that although
we adopted the “box convention” for determining the density of states, corresponding fac-
tors in the normalization of the …nal plane wave state led to a cancellation of any terms
involving the size L of the box. We are free at this point to take L!1 without a¤ecting
the …nal answer.
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8.3 Perturbations that Turn On

We now consider another class of problems, one in which the measurement question that
is asked is slightly di¤erent. Consider a system subject to a time dependent perturbation

H(t) = H0 + V̂ (t) (8.87)

in which the perturbation begins to be applied to the system at some …xed instant of
time (say t = 0), but takes a certain amount of time to develop. (The current has to
build up in the external circuits, for example). To describe this situation, we write the
perturbation in the form

V̂ (t) = V0¸(t) (8.88)

where the function ¸(t) describes the smooth increase in the strength of the perturbation
V̂ to its …nal value V0. The function ¸(t) is unspeci…ed, but is assumed to have the general
features

¸(t) =

8<: 0 for t < 0

1 for t > T
(8.89)

where T is a measure of the time that it takes for the perturbation to build up to full
strength. We note that except for the interval T > t > 0; while the Hamiltonian is ac-
tually changing, the system is described by time-independent Hamiltonia: H0 initially,
and H0 + V0 afterwards. During these initial and …nal intervals the evolution is readily
described by the corresponding eigenvectors and eigenvalues of these two di¤erent opera-
tors. Borrowing from the notation we introduced previously, we denote by jn(0)i and ²(0)n
the eigenvectors and eigenvalues of H0 and by jni and "n the corresponding quantities for
the …nal Hamiltonian H = H0 + V0. Then, by assumption,

H0jn(0)i = "(0)n jn(0)i
(H0 + V0) jni = "njni (8.90)

We then ask the following question. If the system is known to be in an eigenstate
jn(0)i of H0 at t = 0; what is the amplitude for it to be in the eigenstate jn0i of the …nal
Hamiltonian H = H0 + V0 after the perturbation has fully turned on? This is clearly a
relevant question, since information about the admixture of …nal eigenstates allows us to
predict the subsequent evolution for t > T . So the basic question is, what happens to
the system as the perturbation is increasing to its …nal form? The general answer to this
question is complicated, but becomes very simple in two limiting cases: (1) a perturbation
that is applied in…nitely fast, and (2) a perturbation that is applied in…nitely slowly.

The …rst, referred to as a sudden perturbation occurs when the change in the
Hamiltonian occurs much more rapidly then the system (either before or after the change)
can respond. In this limit, the function ¸(t) = µ(t) is essentially a Heaviside step function.
The opposite limit, that in which the turn-on time T is much longer than typical evolution
times of the system describes what is referred to as an adiabatic perturbation.

As a useful thought-experiment that provides a mental mnemonic for remember-
ing what happens in these two cases, consider what happens when a marble is placed in
the bottom (i.e., ground state) of a bowl, which is then raised slowly to some predeter-
mined height. If the raised bowl is then suddenly lowered, the marble will be left hanging
in air, in the “ground state” of the raised bowl, not the lowered one. It does not have time,
under these circumstances to respond to the changing conditions (Hamiltonian) until long
after the bowl is in the lowered position. When, on the other hand, the bowl is lowered
very slowly, the marble stays in the “instantaneous ground state” of the bowl for each
elevation, ultimately sitting in the bottom of the bowl in the …nal lowered position. These
features also characterize the behavior of quantum mechanical systems.
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8.3.1 Sudden Perturbations

In keeping wsith the thought experiment just described, it is possible to show quite gen-
erally that the state vector jÃ(t)i of a system subject to an instantaneous change in its
Hamiltonian undegoes no change itself as a result of the instantaneous change in the H.
In such a circumstance, the Schrödinger equation can be written (in the so-called sudden
approximation) in the formµ

i~
d

dt
¡H0

¶
jÃ(t)i = 0 t < 0µ

i~ d
dt
¡H0 ¡ V0

¶
jÃ(t)i = 0 t > 0 (8.91)

To understand what happens to the state vector during this change, we formally integrate
across the discontinuity in H(t) at t = 0; as follows:

djÃ(t)i = ¡i
~

h
H0jÃ(t)i+ µ(t)V̂0jÃ(t)i

i
dt (8.92)

Z Ã+

Ã¡
djÃ(t)i = ¡i

~

Z +"

¡"
H0jÃ(t)idt¡ i

~

Z "

0

V0jÃ(t)idt (8.93)

Thus, we …nd that, for in…nitesimal "

jÃ+i ¡ jÃ¡i = ¡
i

~
"H0jÃ+i+

i

~
"H0jÃ¡i ¡

i

~
"V0jÃ+i (8.94)

The right hand side is proportional to "; so provided that the strength of V̂0 is …nite,

lim
"!0 jÃ+i ¡ jÃ¡i = 0: (8.95)

Hence jÃ(t)i is continuous across any …nite discontinuity in H. Thus in this limit, if the
system is initially in an eigenstate jn(0)i of H0; it will still be in that state immediately
after the change in the Hamiltonian has occurred. The transition amplitude to …nd it,
at that instant, in the eigenstate jn0i of H0 + V̂0 is just the inner product between the
eigenstates of these two di¤erent Hamiltonia, i.e., :

Tn!n0 = hn0jn(0)i Wn!n0 =
¯̄̄
hn0jn(0)i

¯̄̄2
(8.96)

As an interesting example of this class of problem, consider the beta decay of the tritium
atom, which is an isotope of hydrogen with a nucleus consisting of 2 neutrons and 1
proton, so Z = 1. Suppose the single bound electron of this atom, which sees an electric
potential identical to that of hydrogen, is initially in its ground state, when the tritium
nucleus to which it is bound undergoes beta decay, a process in which the nucleus ejects
an electron with high kinetic energy (» 17 KeV), leaving behind a Helium nucleus with
2 protons and a neutron. As a result of the quick ejection of the “nuclear” electron, the
bound atomic electron sees the potential in which its moving change very quickly from

Vi = ¡e
2

r
(8.97)

to

Vf = ¡2e
2

r
: (8.98)
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Thus, immediately after the beta decay the electron is in the ground state of Hydrogen,

Ã1;s(~r; Z = 1) = h¹rjÃi =
1p
¼a30

exp (¡r=a0) (8.99)

but is moving in a potential corresponding to singly ionized Helium (He+). It is, there-
fore, in a linear combination of Helium ion ground and excited eigenstates. What is the
probability amplitude that an energy measurement will …nd the electron in, say, the Ã2;s
state of the Helium ion? It is just the inner product between the Ã1s ground state of
Hydrogen (with Z = 1) and the corresponding Ã2sstate (with Z = 2) for the He ion. For
a hydrogenic atom with Z = 2;

Ã2s = Ã2;0;0 =
1p
¼a30

µ
1¡ r

a0

¶
e¡r=a0 (8.100)

so the relevant transition amplitude is

T1s!2s =

Z
d3r Ã¤2s(2; r)Ã1s(1; r) =

4

a30

Z 1

0

dr r2
µ
1¡ r

a0

¶
e¡2r=a0 = ¡1

2
;

W1s!2s =
1

4
(8.101)

There is, therefore, a 25% chance of it ending up in this state. Such transitions can be
detected when the electron emits a photon and decays back to the ground state of the He
ion. Obviously the emission spectrum for this process can be calculated by …nding the
corresponding transition probabilities for the remaining excited states of the He+ ion.

8.3.2 The Adiabatic Theorem

Perturbations that reach their full strength very slowly obey the so-called adiabatic theo-
rem: if the system is initially in an eigenstate jn(0)i of H0 before the perturbation starts
to change, then provided the change in H occurs slowly enough, it will adiabatically fol-
low the change in the Hamiltonian, staying in an instantaneous eigenstate of H(t) while
the change is taking place. Afterwards, therefore, it will be found in the corresponding
eigenstate jni of the …nal Hamiltonian H = H0 + V0:

To see this we present a “perturbative proof” of the adiabatic theorem, by focusing
on an interval of time over which the Hamiltonian changes by a very small amount. Now,
by assumption, the Hamiltonian H(t) of the system is evolving very slowly in time and
may ultimately change by a great amount. Suppose, however, that there exists an instant
during this evolution when the system happens to be in an instantaneous eigenstate jni
of H(t). Let us rede…ne our time scale and denote this instant of time as t = 0; and set
H0 = H(0): At some time T later, the Hamiltonian will have evolved into a new operator
H(T ) = H0 + V̂ ; where the change in H; represented by the operator V̂ = H(T )¡H0; is
assumed small, in the perturbative sense, compared to H0. We are interested in exploring
how the evolution of the system during this time interval depends upon the total time
T for this change in the Hamiltonian to take place. As already discussed, we assume
that the Hamiltonian varies in the intervening time interval T > t > 0 in such a way
that V (t) = H(t) ¡H0 = ¸(t)V̂ ; where the function ¸(t) starts at t = 0 with the value
¸(0) = 0 and increases monotonically to the …nal value ¸ = 1 when t = T: To allow
for a parameterization of the speed with which the change in H occurs, we assume that
the function ¸ can be reexpressed in the form ¸ = ¸(t=T ) = ¸(s); with the properties
that ¸(0) = 0 and ¸(1) = 1: This allows us to smoothly decrease the rate at which the
change in H is being made simply by increasing the time T over which the change occurs.
For convenience, we also make the assumption that ¸(s) is a monotonically increasing
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function of s = t=T for s between 0 and 1. Under these circumstances, for su¢ciently
small perturbations V̂ , the state at the end of this interval of time will be given to an
excellent approximation by the results of …rst order time-dependent peturbation theory:

U(T; 0)jn(0)i =
X
m

Ãm(T )jm(0)i (8.102)

with

Ãn(T ) = e¡i!nT

Ãm(T ) = ¡ i
~
e¡i!mT

Z T

0

dt Vm;n(t)e
i!mnt

= ¡iVmn
~
e¡i!mT

Z T

0

dt ¸(t=T )ei!mnt m 6= n: (8.103)

Performing an integration by parts, and using the limiting values of the function ¸(t=T )
over this interval, leads then to the result

Ãm(t) = ¡
Vmne

¡i!mT ei!mnT

!mn
+
Vmne

¡i!mT ei!mnT

!mn

Z T

0

dt
d¸(t=T )

dt
ei!mnt: (8.104)

Now in the limit that the time T over which this change takes place becomes very large,
the second integral becomes as small as we like. This follows from the fact that

d¸(t=T )

dt
=
1

T
¸0(t=T ) =

d¸(s)

ds

¯̄̄̄
s=t=T

: (8.105)

Thus the integral of interest is bounded in magnitude by the relation¯̄̄̄
¯
Z T

0

dt
d¸(t=T )

dt
ei!mnt

¯̄̄̄
¯ · 1

T

Z T

0

dt
¯̄
¸0(t=T )ei!mnt

¯̄
=
1

T

Z T

0

dt ¸0(t=T )

=
¸(1)¡ ¸(0)

T
=
1

T
: (8.106)

where in evaluating the last integral we have used the assumed monotonicity of ¸. Hence
the second term in the previous integration by parts is of order 1=T and becomes negligible
relative to the …rst as T ! 1. In this limit, then, the …rst term gives for m 6= n the
result

Ãm(T ) = ¡
Vmne

¡i!mT ei!mnt

~!mn
= ¡Vmne

¡i!nt

"
(0)
m ¡ "(0)n

; (8.107)

where we have used the de…nition of !mn in terms of the corresponding eigenvalues of
H0: Thus, to this order we can write

jÃ(t)i = e¡!ntjn(0)i+ e¡i!nt
X
m6=n

Vmn

"
(0)
m ¡ "(0)n

jm(0)i

= e¡!ntjni (8.108)

where

jni = jn(0)i+
X
m6=n

Vmn

"
(0)
m ¡ "(0)n

jm(0)i (8.109)

is the perturbative result for the exact eigenstate of H(T ) = H0 + V̂ expressed as an
expansion in eigenstates of H0 = H(0): Thus, if the system begins the time interval in
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an eigenstate jn(0)i of H(0), it ends in an eigenstate jni of H(T ): We can now repeat
the process, presumably, by rede…ning the time such that t = T corresponds to a new
time variable t0 = 0; rede…ne H0 as H(T ) = H(t0 = 0); and proceed in the same way as
above. In this way, after many such (long) time intervals, the system has remained in
the corresponding eigenstate of the evolving Hamiltonian, which can ultimately change
by a very great amount. Provided that the change occurs su¢ciently slowly, however, the
state of the system will adiabatically “follow” the slowly-evolving Hamiltonian. Thus, the
amplitude to …nd the system in an eigenstate of the …nal Hamiltonian is unity, provided
it started in the corresponding eigenstate of the initial Hamiltoninan.

If the change that occurs in the Hamiltonian is not in…nitely slow, however, there
will be transitions induced to other eigenstates of H(T ). In the case of a pair of energy
levels that are made to cross as a result of a time dependent perturbation it is possible
to determine the probability of transitions being induced between di¤erent corresponding
levels. The resulting analysis of such “Landau-Zener” transitions is presented in an ap-
pendix. he details are a bit complicated and rely on properties of the parabolic cylinder
functions. The end result, however, is the surpsrisingly simple expression

W = exp

µ
¡ ¼V 2

~ jd"=dtj
¶

(8.110)

for the transition probability between a pair of levels whose time-dependent energies cross
at a rate d"=dt and which are connected by a constant matrix element V: Note that as the
time rate of change of the perturbation goes to zero, the transition probability becomes
exponentially small, and can, consistent with the adiabatic theorem, be neglected provided

d"=dt << ¼V 2=~: (8.111)

8.4 Appendix: Landau-Zener Transitions

Consider a pair of energy levels connected by a constant matrix element V . If the (diag-
onal) energies of the original states remain constant, then the probability amplitude to
be found in either one will oscillate in time with a frequency proportional to V and with
an amplitude that depends upon the magnitude of the energy di¤erence between them.
For widely separated levels very little amplitude is ever transferred from one state to the
other. Even when the levels are degenerate, the transfer is complete but temporary, since
the amplitude repeatedly oscillates entirely back to the original state. Consider, how-
ever, a time-dependent perturbation that causes two widely separated levels connected
by a constant matrix element to temporarily become close, or even degenerate in energy,
and then to separate. In this situation an irreversible transition can occur as a result
of the strong transfer that takes place during the limited time that the levels are nearly
degenerate, since some fraction of the amplitude will generally get “stranded” in each
state as the levels become widely separated again in energy. Processes of this type are
referred to as Landau-Zener transitions since they were originally studied independently
by those two authors in the context of electronic transitions in molecular systems during
collisions. The basic idea has a wider applicability and has more recently been applied
to understand optically induced transitions between Stark-split states of atomic systems
within the so-called dressed atom picture of Cohen-Tanoudji, et al.

To understand the essence of the Landau-Zener transition we consider two states
jÁ1i and jÁ2i; subject to a time-dependent Hamiltonian H(t) for which

H(t)jÁ1i = ~!1(t)jÁ1i+ ~vjÁ2i
H(t)jÁ2i = ~!2(t)jÁ2i+ ~vjÁ1i
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where, for simplicity, !1(t) and !2(t) are taken to be linear functions of time such that
!2(t) = ¡!1(t) = ®t=2; with ® > 0: Thus, !2 is negative for negative times and positive
for positive times, while !1 has the opposite behavior. At very large negative times the
levels are widely separated with a positive energy splitting

! = !1 ¡ !2 = ¡®t
indicating that !1 > !2 for t < 0. These “bare” energy levels come together and cross at
t = 0, with !2 becoming larger than !1 for t > 0. The exact instantaneous eigenenergies
and eigenstates jÃ+i and jÃ¡i are easily determined by diagonalizing the 2 £ 2 matrix
associated with H(t); the two roots to the secular equation

E§(t) = §~
r
v2 +

1

4
®2t2

are indicated schematically below along with the bare energies.

-2

-1

0

1

2

-4 -2 2 4t

Clearly, at large negative times !2 corresponds to the lower branchE¡ and !1 to the upper
branch E+: The situation becomes reversed at large positive times, where !2 corresponds
to E+ and !1 to E¡: Thus, up to a phase factor,

lim
t!1Ã+(t) = lim

t!¡1Ã¡(t) = Á2 lim
t!1Ã¡(t) = lim

t!¡1Ã+(t) = Á1

In the neighborhood of t = 0; the exact eigenstates are nearly equal symmetric and
antisymmmetric combinations of jÁ1i and jÁ2i; and the two branches associated with the
exact eigenergies exhibit the classic “avoided crossing” behavior, never coming any closer
together in energy than 2V = 2~v. Suppose that initially, as t! ¡1, the system is in the
ground state jÁ2i = jÃ¡(¡1)i; i.e., on the lower branch E¡(t). Then, according to the
adiabatic theorem, provided H(t) is varied slowly enough (®¿ 1), the system will remain
on this lower branch at each instant as the system adiabatically evolves. At large positive
times, therefore, the system will (up to a phase) be in the state jÁ1i = jÃ¡(+1)i with
unit probability. On the other hand, transitions between the upper and lower branches
may occur if the variation is not su¢ciently slow.

To analyze this process, we consider the following expansion

jÃ(t)i = C1(t)e¡i©1(t)jÁ1i+C1(t)e¡i©2(t)jÁ2i
for the state of the system, where

©i(t) =

Z t

0

!i(t
0)dt0 d©i=dt = !i(t):
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Substitution into the Schrödinger equation

i~ d
dt
jÃ(t)i = H(t)jÃ(t)i

yields the following set of …rst order di¤erential equations

i
dC1
dt

= vei
R t
0
! dt0C2 i

dC2
dt

= ve¡i
R t
0
! dt0C1:

for the expansion coe¢cients. We seek solutions to these equations corresponding to the
boundary conditions

jC1(¡1)j = 0 jC2(¡1)j = 1;
in which the system is initially in an eigenstate assocated with the lower branch E¡
of the energy spectrum, and we are interested in the probability that at large positive
times, well after the levels have separated and are no longer strongly-interacting, the
system has made a transition from the lower branch E¡ to the upper branch E+: In this
regime E+ corresponds to the state jÁ2i: Thus, the transition probability arising from the
nonadiabaticity of the perturbation is given by

P = jC2(+1)j2 = 1¡ jC1(+1)j2 :
To proceed, we take another derivative and substitute back in to obtain the

following pair of second order di¤erential equations

d2C1
dt2

¡ i!dC1
dt

+ v2C1 = 0
d2C2
dt2

+ i!
dC2
dt

+ v2C2 = 0;

The substitutions

C1 = U1 exp

µ
i

2

Z t

0

! dt0
¶

C2 = U2 exp

µ
¡ i
2

Z t

0

! dt0
¶

along with the relation d!=dt = ¡® reduce these to
d2U1
dt2

+

µ
v2 ¡ i®

2
+
®2t2

4

¶
U1 = 0

d2U2
dt2

+

µ
v2 +

i®

2
+
®2t2

4

¶
U2 = 0:

A …nal pair of substitutions

z = ®1=2e¡i¼=4t n = iv2=® = i°

where ° = v2=® is positive and real, put these into the standard di¤erential equations

d2U1
dz2

¡
µ
1

4
z2 ¡ n¡ 1

2

¶
U1 =

d2U1
dz2

¡
µ
1

4
z2 + a1

¶
U1 = 0

d2U2
dz2

¡
µ
1

4
z2 ¡ n+ 1

2

¶
U2 =

d2U2
dz2

¡
µ
z2

4
+ a2

¶
U2 = 0

obeyed by the parabolic cylinder functions U(a; z), where here a1 = ¡n ¡ 1
2 and a2 =¡n+ 1

2 :
The solution to the …rst of these equations having the right properties as t!§1

is the parabolic cylinder function

U1(z) = AU(¡a1;¡iz) = AU(a;¡iz);
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where a = n+ 1
2 and the constant A must be determined from the initial conditions and

the asymptotic properties of the functions U(a; x). As t ! ¡1 the argument of the
function can be written ¡iz ! ie¡i¼=4j®1=2tj = ei¼=4R; with R ! 1 real and positive,
along which path¤

U1 = AU(a;¡iz) » AU(a;Rei¼=4) » Ae¡1
4 iR

2

R¡n¡1e¡i¼(n+1)=4:

This clearly goes to zero as R!1 as 1=R (note that R¡n = e¡i° lnR oscillates with unit
magnitude as R increases because n is strictly imaginary). Thus this solution automati-
cally satis…es the initial condition jC1 (¡1)j = jU1(¡1)j = 0: To determine the value of
A we use the other initial condition

1 = jC2(¡1)j = 1

v
lim

t!¡1

¯̄̄̄
dC1
dt

¯̄̄̄
where we have used the original di¤erential equation to express C2 in terms of the deriv-
ative of C1: Now using the relation between C1 and U1 the boundary condition for U1
becomes

1 = lim
t!¡1 v

¡1
¯̄̄̄
¡i!
2
U1 +

dU1
dt

¯̄̄̄
It turns out that as t!¡1 the …rst term in the brackets has precisely the same asymp-
totic behavior

¡ i!
2
U2 = ¡i®t

2
U1 » ¡1

2
iA®1=2Re¡

1
4 iR

2

R¡n¡1e¡i¼(n+1)=4

» ¡iA
2
®1=2 e¡

1
4 iR

2

R¡ne¡i¼(n+1)=4;

as the second term

dU1
dt

= A®1=2
dU(a;Rei¼=4)

dR
» A®1=2 d

dR

h
e¡

1
4 iR

2

R¡n¡1ei¼(n+1)=4
i

» ¡ iA
2
®1=2e¡

1
4 iR

2

R¡ne¡i¼(n+1)=4:

Thus the boundary condition becomes

1 = lim
R!1

v¡1
¯̄̄
¡iA®1=2e¡ 1

4 iR
2

R¡ne¡i¼(n+1)=4
¯̄̄
= jAj °¡1=2e¼°=4;

from which we deduce that
jAj = °1=2e¡¼°=4:

At large positive times the argument of the parabolic cylinder function can be written
¡iz ! ¡ie¡i¼=4 ¯̄®1=2t¯̄ = Re¡i3¼=4. To determine the asymptotic properties in this
situation we use the identityy

p
2¼U

³
¡a;Re¡i¼=4

´
= ¡(

1

2
+ a)

n
e¡i

¼
2 (¡a+ 1

2)U(a;Rei¼=4) + ei
¼
2 (¡a+ 1

2)U(a;Re¡i3¼=4)
o

¤From Abramowitz and Stegun, p.689, Eq. 19.8.1 we have for jxj >> jaj when jarg xj < ¼=2; that
U(a; x) » e¡x2=4x¡a¡1=2

yHere we use, with x = Re¡i¼=4 the expression from Abramowitz and Stegun, p. 687, Eq. 19.4.6,
which gives

p
2¼U (a;§x) = ¡(1

2
¡ a)

n
e¡i¼(

1
2a+

1
4 )U(¡a;§ix) + ei¼( 12a+ 1

4 )U(¡a;¨ix)
o
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which implies that as t! +1

U1 = AU(a;Re¡i3¼=4) = A

"
ei¼(n+1)U(a;Rei¼=4) +

p
2¼

¡ (n+ 1)
ei¼n=2U

³
¡a;Re¡i¼=4

´#

» A

"
ei3¼(n+1)=4e¡

1
4 iR

2

R¡n¡1 +
p
2¼

¡ (n+ 1)
ei¼n=2e

1
4 iR

2

Rne¡i¼n=4
#
» A

p
2¼

¡ (n+ 1)
ei¼n=2e

1
4 iR

2

Rne¡i¼n=4

and so

jU1 (+1)j =
p
2¼°

¡ (n+ 1)
e¡¼°=2:

The square of this gives the amplitude for the system to remain on the lower branch E¡;
i.e.,

jC1 (1)j2 = lim
R!+1

jU1
³
Re¡i¼=4

´
j2 = 2¼°

¡ (1 + i°) ¡ (1¡ i°)e
¡¼°

= 2e¡¼° sinh¼° = 1¡ e¡¼°

and so the corresponding transition probability to the upper branch is given by the
Landau-Zener formula

P = 1¡ jC1 (1)j2

= e¡¼° = exp
¡¡¼V 2=~2®¢ = expµ¡ ¼V 2

~2 jd!=dtj
¶
:


