21. Consider a triatomic molecule with three identical atoms that are bound together with each atom at its own corner of an equilateral triangle of edge length \(a \). An electron added to the molecule (to form a molecular ion) can be put in an identical atomic orbital on any one of the three atoms. Denote the atomic states in which the electron is on atom \(i \) as \(|i\rangle \), and assume that these three states \(\{|1\rangle, |2\rangle, \text{ and } |3\rangle\} \), form an orthonormal set. Set the zero of potential energy so that the mean energy associated with each such state vanishes, i.e., \(\langle i|H|i\rangle = 0 \) for each state \(|i\rangle \). Suppose also that the electron on an atom can move to either of its neighbors, such that

\[
\langle i|H|j\rangle = V_0 \quad \text{for } i \neq j
\]

(a) Construct a \(3 \times 3 \) matrix \([H] \) that represents the Hamiltonian within the subspace spanned by these 3 atomic states, using the states \(\{|i\rangle\} \) as an ONB for the subspace. Find the trace of this matrix.

(b) Find the energy eigenvalues and the degeneracies of this molecular ion.

(c) Construct an ONB of eigenstates \(\{\phi_n, \tau\} \) of the system, as linear combinations of the atomic states. (The \(\tau \) is included in the notation to allow for degenerate eigenvalues.)
22. Let \(\{|n\rangle\} \), with \(n = 0, 1, 2, \ldots \), be a discrete ONB for a quantum state space \(S \). Let \(A \) be an operator such that \(\langle n | A = \langle n + 1 | \), for all \(n = 0, 1, 2, \ldots \).

(a) Find matrix elements of \(A \) and \(A^+ \) in this representation. Show that \(A|0\rangle = 0 \).

(b) Write down ket-bra expansions of \(A \) and \(A^+ \) in this representation, explicitly showing the first few terms of the expansion. Be careful with summation limits. Is \(A \) Hermitian?

(c) Evaluate the action of \(A^+ A \) and \(AA^+ \) on \(|n\rangle \). Explicitly consider the case in which \(n = 0 \).

(d) Is \(A \) the inverse of \(A^+ \)? Is \(A \) unitary? Is \(A \) normal? (Recall: An operator \(A \) is normal if \([A, A^+] = 0 \). Be careful.)
23. In a 2-dimensional space S spanned by the orthonormal vectors $|1\rangle$ and $|2\rangle$, a certain linear operator A has the following action:

\[A|2\rangle = -i|1\rangle \quad A|1\rangle = i|2\rangle. \]

(a) Construct the matrix $[A]$ representing the operator A in this representation. Is A Hermitian? Is A Unitary?

(b) Let B be the linear operator that happens to be represented in this basis by a matrix $[B] = [A]^* \text{ that is the complex conjugate of that representing } A$. Construct $[B]$.

(c) Let $|\phi_1\rangle = i|1\rangle$ and $|\phi_2\rangle = |2\rangle$, be a new set of basis vectors. Show that these two new vectors are orthonormal.

(d) Construct the matrices $[A']$ and $[B']$ representing the operators A and B in this new basis, and show that $[B'] \neq [A']^*$.

What does this problem show about the complex conjugate of a linear operator?
24. Consider a so-called two level system, consisting of two states |1\rangle and |2\rangle separated in energy by an amount 2\Delta. Suppose the system is subject to a perturbation that “mixes” the two states, so that in the basis of states |1\rangle and |2\rangle the relevant Hamiltonian \(H \) is associated with a matrix

\[
[H] = \begin{pmatrix}
\epsilon_0 + \Delta & V \\
V & \epsilon_0 - \Delta
\end{pmatrix}.
\]

(a) Rewrite the matrix in the form \(\epsilon_0 [1] + \Delta [W] \), where [1] is the identity matrix and [W] is a matrix that you should construct explicitly and express in terms of the quantity \(\tan \theta = V/\Delta \). Show that these two matrices commute, and that any linear combination of the states |1\rangle and |2\rangle is an eigenstate of \(\epsilon_0 [1] \), with eigenvalue \(\epsilon_0 \). Thus, an eigenstate \(|\lambda\rangle = a|1\rangle + b|2\rangle \) of \(W \) with eigenvalue \(\lambda \) will be an eigenstate of \(H \) with eigenvalue \(\epsilon_0 + \lambda \Delta \).

(b) Solve the characteristic equation for \([W] \) and show that its two eigenvalues can be written as \(\lambda_{\pm} = \pm \sec \theta \). Use this to find the energy eigenvalues \(\epsilon_{\pm} \) of \(H \). Express these eigenvalues in terms of \(\epsilon_0, \Delta, \) and \(V \). Plot the eigenvalues as a function of \(V/\Delta \) to demonstrate the phenomena of “level repulsion”.

(c) For \(\lambda_+ = \sec \theta \), solve the eigenvalue equation for \(W \) to obtain the corresponding eigenstate as a linear combination of the states |1\rangle and |2\rangle. Express your solution in terms of trigonometric functions of the half angle \(\theta/2 \).

(d) Do the same for \(\lambda_- = -\sec \theta \).