21. Consider a triatomic molecule with three identical atoms that are bound together with each atom at its own corner of an equilateral triangle of edge length a. An electron added to the molecule (to form a molecular ion) can be put in an identical atomic orbital on any one of the three atoms. Denote the atomic states in which the electron is on atom i as $|i\rangle$, and assume that these three states $\{i\}$, $|1\rangle$, $|2\rangle$, and $|3\rangle$, form an orthonormal set. Set the zero of potential energy so that the mean energy associated with each such state vanishes, i.e., $\langle i|H|i\rangle = 0$ for each state $|i\rangle$. Suppose also that the electron on an atom can move to either of its neighbors, such that

$$\langle i|H|j\rangle = V_0 \quad i \neq j$$

(a) Construct a 3×3 matrix $[H]$ that represents the Hamiltonian within the subspace spanned by these 3 atomic states, using the states $\{i\}$ as an ONB for the subspace. Find the trace of this matrix. From the information given it is clear that

$$[H] = \begin{pmatrix}
0 & V_0 & V_0 \\
V_0 & 0 & V_0 \\
V_0 & V_0 & 0
\end{pmatrix}$$

(b) Find the energy eigenvalues and the degeneracies of this molecular ion. The characteristic equation $\det ([H] - \epsilon I) = 0$ can be written

$$\begin{vmatrix}
-\epsilon & V_0 & V_0 \\
V_0 & -\epsilon & V_0 \\
V_0 & V_0 & -\epsilon
\end{vmatrix} = -\epsilon^3 + 3\epsilon V_0^2 + 2V_0^3 = 0.$$

This third order polynomial easily factors, giving the equivalent equation $(\epsilon - 2V_0)(\epsilon + V_0)^2 = 0$, from which we determine that there are two distinct eigenvalues

$$\epsilon_0 = -V_0 \quad n_0 = 2$$

which is two fold degenerate, and

$$\epsilon_1 = 2V_0 \quad n_1 = 1$$

which is non-degenerate.

(c) Construct an ONB of eigenstates $\{|\epsilon_n, \tau\rangle\}$ of the system, as linear combinations of the atomic states. (The τ is included in the notation to allow for degenerate eigenvalues.) The two-fold degenerate ground state has eigenstates $|\chi\rangle = \sum \chi_i |i\rangle$ that satisfy

$$\begin{pmatrix}
V_0 & V_0 & V_0 \\
V_0 & V_0 & V_0 \\
V_0 & V_0 & V_0
\end{pmatrix} \begin{pmatrix}
\chi_1 \\
\chi_2 \\
\chi_3
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}$$

Although this gives three linear equations, only one is linearly independent (i.e., $N - n_0 = 3 - 2 = 1$). The first row gives $\chi_1 + \chi_2 + \chi_3$. Taking $\chi_1 = 0$ and $\chi_2 = -\chi_3 = 1$ gives one un-normalized solution $|\chi\rangle = |2\rangle - |3\rangle$, which normalization turns into

$$|\epsilon_0, 1\rangle = \frac{1}{\sqrt{2}} (|2\rangle - |3\rangle)$$

taking $\chi_1 = 2$ and $\chi_2 = \chi_3 = -1$ gives another, i.e., $|\chi\rangle = 2|1\rangle - |2\rangle - |3\rangle$, which is easily verified to be orthogonal to $|\epsilon_0, 1\rangle$. If it were not, one could use the Graham-Schmidt procedure to subtract off part of $|\chi\rangle$ lying along $|\epsilon_0, 1\rangle$ and then normalize. After normalization we obtain the vector

$$|\epsilon_0, 2\rangle = \frac{1}{\sqrt{6}} (2|1\rangle - |2\rangle - |3\rangle)$$
Other choices are, of course possible in this two-dimensional eigenspace. The non-degenerate eigenvalue has an eigenstate that satisfies
\[
\begin{bmatrix}
-2V_0 & V_0 & V_0 \\
V_0 & -2V_0 & V_0 \\
V_0 & V_0 & -2V_0
\end{bmatrix}
\begin{bmatrix}
\chi_1 \\
\chi_2 \\
\chi_3
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]
\[
\begin{bmatrix}
-2V_0 & V_0 & V_0 \\
V_0 & -2V_0 & V_0 \\
V_0 & V_0 & -2V_0
\end{bmatrix}
\begin{bmatrix}
1 \\
-1 \\
3
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]
which will generate two linearly independent equations. From the first row we find that
\[
2\chi_1 = \chi_2 + \chi_3
\]
and from the second, we find
\[
2\chi_2 = \chi_1 + \chi_3
\]
Solving these gives \(\chi_1 = \chi_2 = \chi_3 \). Normalization gives the non-degenerate energy eigenvector
\[
|\varepsilon_1\rangle = \frac{1}{\sqrt{3}} \left[|1\rangle + |2\rangle + |3\rangle \right].
\]
Thus our basis of energy eigenstates is
\[
|\varepsilon_0, 1\rangle = \frac{1}{\sqrt{2}} \left[|2\rangle - |3\rangle \right]
\]
\[
|\varepsilon_0, 2\rangle = \frac{1}{\sqrt{6}} \left[2|1\rangle - |2\rangle - |3\rangle \right]
\]
\[
|\varepsilon_1\rangle = \frac{1}{\sqrt{3}} \left[|1\rangle + |2\rangle + |3\rangle \right]
\]
22. Let \{ |n\rangle \}, with \(n = 0, 1, 2, \ldots \), be a discrete ONB for a quantum state space \(S \). Let \(A \) be an operator such that \(\langle n | A = \langle n + 1 | \), for all \(n = 0, 1, 2, \ldots \).

(a) Find matrix elements of \(A \) and \(A^+ \) in this representation. Show that \(A|0\rangle = 0 \).

We find that
\[
\langle n | A | n' \rangle = \langle n + 1 | n' \rangle = \delta_{n', n+1}
\]

Taking the adjoint of this last expression and switching primed and unprimed indices gives
\[
\langle n' | A^+ | n \rangle = \delta_{n, n'+1} = \delta_{n', n-1}.
\]

Write down ket-bra expansions of \(A \) and \(A^+ \) in this representation, explicitly showing the first few terms of the expansion. Be careful with summation limits. Is \(A \) Hermitian?

Forming ket-bra expansions, we find that
\[
A = \sum_{n, n'=0}^{\infty} |n\rangle \langle n | A | n' \rangle \langle n' | = \sum_{n, n'=0}^{\infty} |n\rangle \delta_{n', n+1} \langle n' | = \sum_{n=0}^{\infty} |n\rangle \langle n + 1 |
\]

the adjoint of which is
\[
A^+ = \sum_{n=0}^{\infty} |n + 1\rangle \langle n |
\]
\[
= |1\rangle \langle 0 | + |2\rangle \langle 1 | + \ldots
\]

which clearly is different from \(A \), so \(A \) is not Hermitian.

(b) Evaluate the action of \(A^+ A \) and \(AA^+ \) on \(|n\rangle \). Explicitly consider the case in which \(n = 0 \).

For \(n > 0 \) we have
\[
A |n\rangle = \sum_{n'=0}^{\infty} |n'\rangle \langle n' | (n' + 1 | n \rangle = \sum_{n'=0}^{\infty} |n'\rangle \delta_{n, n'+1}
\]
\[
= |n - 1\rangle \quad n > 0
\]

Clearly this cannot work for \(n = 0 \), since there isn’t any state. Indeed, for \(n = 0 \), we have
\[
A|0\rangle = (|0\rangle \langle 1 | + |1\rangle \langle 2 | + \ldots) |0\rangle = 0
\]

so the state \(|0\rangle \) is taken onto the null vector by the operator \(A \). It is also an eigenstate of \(A \) with eigenvalue 0. Similarly, we have
\[
A^+ |n\rangle = \sum_{n'=0}^{\infty} |n+1\rangle \langle n' | n \rangle = \sum_{n'=0}^{\infty} |n+1\rangle \delta_{n, n'}
\]
\[
= |n+1\rangle
\]

for all \(n = 0, 1, 2, \ldots \). Thus, we find that \(AA^+ |n\rangle = A |n+1\rangle = |n\rangle \) for all \(n \). That is
\[
AA^+ = 1.
\]

On the other hand \(A^+ A |n\rangle = A^+ |n - 1\rangle \) only for \(n > 0 \). For these states \(A^+ A |n\rangle = A^+ |n - 1\rangle = |n\rangle \), does give the original state back, but \(A^+ A |0\rangle = A^+ 0 = 0 \). You can’t come back from the null vector. It is readily verified that \(A^+ A = 1 - |0\rangle \langle 0 | \). Since they don’t give the state back for all \(n \), \(A \) and \(A^+ \) are not inverses.

(c) Is \(A \) the inverse of \(A^+ \)? Is \(A \) unitary? Is \(A \) normal? (Recall: An operator \(A \) is normal if \([A, A^+] = 0 \). Be careful.)

We have seen that \(A \) and \(A^+ \) are not inverses of each other. Thus they are not unitary. Also, it is clear that \(AA^+ = 1 \) and \(A^+ A = 1 - |0\rangle \langle 0 | \) are not the same, so \([A, A^+] \neq 0 \). The operators \(A \) and \(A^+ \) are not normal.
23. In a 2-dimensional space S spanned by the orthonormal vectors $|1\rangle$ and $|2\rangle$, a certain linear operator A has the action $A|2\rangle = -i|1\rangle$ and $A|1\rangle = i|2\rangle$.

(a) Construct the matrix $[A]$ representing the operator A in this representation. Is A Hermitian? Is A Unitary?

Orthonormality implies $\langle 1|1 \rangle = 1 = \langle 2|2 \rangle$ and $\langle 1|2 \rangle = 0 = \langle 2|1 \rangle$. The matrix representing A in this basis has elements $A_{11} = i\langle 1|2 \rangle = 0$, $A_{22} = -i\langle 2|1 \rangle = 0$, $A_{12} = -i\langle 1|1 \rangle = -i$, and $A_{21} = i\langle 2|2 \rangle = i$. Thus

$$[A] = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = [A]^+$$

Thus A is Hermitian. It is easily verified that $[A] = [A]^+[A] = [A][A]^+ = [1]$, so A is also unitary.

(b) Let B be the linear operator that happens to be represented in this basis by a matrix $[B] = [A]^*$ that is the complex conjugate of that representing A. Construct $[B]$.

$$[B] = [A]^* = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix} = -[A]$$

(c) Let $|\phi_1\rangle = i|1\rangle$ and $|\phi_2\rangle = |2\rangle$, be a new set of basis vectors. Show that these two new vectors are orthonormal.

We evaluate

$$\langle \phi_1 | \phi_2 \rangle = -i \langle 1|2 \rangle = 0$$
$$\langle \phi_1 | \phi_1 \rangle = -i \langle 1|1 \rangle = 1$$
$$\langle \phi_1 | \phi_2 \rangle = \langle 2|2 \rangle = 1$$

(d) Construct the matrices $[A']$ and $[B']$ representing the operators A and B in this new basis, and show that $[B'] \neq [A']^*$.

In this new basis

$$[A'] = \begin{bmatrix} \langle \phi_1 | A | \phi_1 \rangle & \langle \phi_2 | A | \phi_2 \rangle \\ \langle \phi_2 | A | \phi_1 \rangle & \langle \phi_2 | A | \phi_2 \rangle \end{bmatrix} = \begin{bmatrix} (i) (-i) \langle 1|A|1 \rangle & (-i) \langle 1|A|2 \rangle \\ (i) \langle 2|A|1 \rangle & \langle 2|A|2 \rangle \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

$$[B'] = \begin{bmatrix} \langle \phi_1 | B | \phi_1 \rangle & \langle \phi_2 | B | \phi_2 \rangle \\ \langle \phi_2 | B | \phi_1 \rangle & \langle \phi_2 | B | \phi_2 \rangle \end{bmatrix} = \begin{bmatrix} (i) (-i) \langle 1|B|1 \rangle & (-i) \langle 1|B|2 \rangle \\ (i) \langle 2|B|1 \rangle & \langle 2|B|2 \rangle \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

which shows that $[B'] \neq [A']^*$. Hence the complex conjugate of a linear operator A is not a well-defined object. In this basis it would imply that $A^* = A$ and in the original basis that $A^* = -A$.

36
24. In a basis of states $|1\rangle$ and $|2\rangle$ we have

$$[H] = \begin{pmatrix}
\epsilon_0 + \Delta & V \\
V & \epsilon_0 - \Delta
\end{pmatrix}.$$

(a) We rewrite this as

$$[H] = \begin{pmatrix}
\epsilon_0 + \Delta & V \\
V & \epsilon_0 - \Delta
\end{pmatrix} = [H] = \begin{pmatrix}
\epsilon_0 & 0 \\
0 & \epsilon_0
\end{pmatrix} + \begin{pmatrix}
\Delta & V \\
V & \Delta
\end{pmatrix}$$

$$= \epsilon_0 \begin{pmatrix}1 & 0 \\0 & 1 \end{pmatrix} + \Delta \begin{pmatrix}1 & V/\Delta \\V/\Delta & 1 \end{pmatrix} = \epsilon_0 [1] + \Delta [W]$$

with

$$[W] = \begin{pmatrix}1 & V/\Delta \\V/\Delta & 1 \end{pmatrix} = \begin{pmatrix}1 & \tan \theta \\\tan \theta & 1 \end{pmatrix}$$

where we have set $\tan \theta = v/\Delta$. Any operator commutes with the identity operator, and any non-zero state is an eigenstate of it. Thus, any linear combination of the states $|1\rangle$ and $|2\rangle$ is an eigenstate of $\epsilon_0 [1]$, with eigenvalue ϵ_0. Thus, an eigenstate $|\lambda\rangle = a|1\rangle + b|2\rangle$ of W with eigenvalue λ will be an eigenstate of H with eigenvalue $\epsilon_0 + \lambda \Delta$.

(b) The characteristic equation is $\det (W - \lambda) = 0 = \lambda^2 - 1 - \tan^2 \theta$. Thus, $\lambda^2 = 1 + \tan^2 \theta = \sec^2 \theta$, gives $\lambda = \pm \sec \theta$. Constructing a right triangle with sides of length Δ and V, and hypotenuse $\sqrt{\Delta^2 + V^2}$ we find that $\lambda = \pm \sqrt{1 + (V/\Delta)^2}$, which gives the energy eigenvalues of $[H]$ as

$$\epsilon_\pm = \epsilon_0 \pm \sqrt{\Delta^2 + V^2}.$$

(c) For $\lambda_+ = \sec \theta$, we solve the eigenvalue equation for W

$$\begin{pmatrix}1 - \sec \theta & \tan \theta \\\tan \theta & 1 + \sec \theta \end{pmatrix} \begin{pmatrix}a \\b \end{pmatrix} = \begin{pmatrix}0 \\0 \end{pmatrix}.$$

The first line gives $a (1 - \sec \theta) + b \tan \theta = 0$, which reduces to $a (\cos \theta - 1) = -b \sin \theta$. The half-angle identities $\cos \theta - 1 = -2 \sin^2 (\theta/2)$ and $\sin \theta = 2 \sin (\theta/2) \cos (\theta/2)$, reduce this to the relation $a \sin (\theta/2) = b \cos (\theta/2)$. The inspired choice $b = \sin (\theta/2)$ then requires that $a = \cos (\theta/2)$, so that

$$|\epsilon_+\rangle = \cos (\theta/2)|1\rangle + \sin (\theta/2)|2\rangle$$

associated with energy $\epsilon_+ = \epsilon_0 + \sqrt{\Delta^2 + V^2}$.

(d) For $\lambda_- = -\sec \theta$, we solve the eigenvalue equation for W

$$\begin{pmatrix}1 + \sec \theta & \tan \theta \\\tan \theta & 1 - \sec \theta \end{pmatrix} \begin{pmatrix}a \\b \end{pmatrix} = \begin{pmatrix}0 \\0 \end{pmatrix}.$$

Now the second line gives $a \tan \theta = b (1 - \sec \theta)$, which reduces to $a \sin \theta = b (\cos \theta - 1)$. The half-angle identities reduce this to the relation $a \sin (\theta/2) = -b \sin (\theta/2)$. The choice $b = -\cos (\theta/2)$ then requires that $a = \sin (\theta/2)$, so that

$$|\epsilon_-\rangle = \sin (\theta/2)|1\rangle - \cos (\theta/2)|2\rangle$$

associated with energy $\epsilon_- = \epsilon_0 - \sqrt{\Delta^2 + V^2}$.