
Aleksandar Jankovic

CpE-213

Project 1

Due Date: 03/04/2014

Project 1: Create Your Own WIMP51 Version

Objectives:

Objectives were to create a version of WIMP51 processor in Quartus II which would

include new instruction set, leaving the basic architecture of the processor intact. The instruction

set assigned was CLRB A and SETB A, or clear bit in the accumulator and set bit in the

accumulator, respectively.

Preliminary Analysis:

Both, CLRB A and SETB A were two byte instructions. The operational code (op-code)

for CLRB A was C2 expressed in hexadecimal numbers (11000010 in binary) and SETB A was

D2 in hexadecimal (11010010 in binary). The goal was to access a specific bit in the

accumulator and change it to 0 or 1. These were two byte instructions, so the instruction register

(IR) had to store the op-code and the auxiliary register (AUX) had to store the bit address. Both

bytes of information were fed into the arithmetic-logic unit (ALU) at the same time, and then

passed into the accumulator from the ALU.

It was noticed that the required instructions (CLRB A and SETB A) were in a way

similar to op-code MOV A,#dd (74H,dddddddd). This was also a two byte instruction which was

used to store a one byte number (#dd) into the accumulator. Thus, the ALU had to have access to

the op-code (74H in this case) stored in the IR and the number (#dd to be placed into the

accumulator) stored in the AUX. The MOV A,#dd instruction was therefore analyzed in order

for cycle pattern to be copied to the new instruction set. Table 1 (below) described cycle pattern,

or the register states and values contained for different cycles of Wimp51: fetch, decode, and

execute, during the MOV A,#dd instruction set.

FETCH DECODE EXECUTE

IR_WE ON 74 OFF 74 OFF 74 IR

REG_WE OFF xx OFF xx OFF xx REG_TOP

AUX_WE OFF xx ON dd ON dd AUX

PC_WE OFF - ON ↑ ON ↑ PC_ALU/PC

ACC_WE OFF xx OFF xx ON dd ACC

Table 1. Register states and values for different cycles during MOV A,#dd instruction

 From the table 1, it was noticeable during the fetch cycle only instruction register write

enable logic (IR_WE) was in the ON state, all the other write enable logic units were in the OFF

state. Thus, the op-code 74H (01110100) was stored only in the IR. During decode and execute

cycles, the IR_WE was in the OFF state, so the IR kept its first value 74H. Program counter

write enable logic was in the ON state and the program counter (PC) was increased in the decode

rdua
Text Box

rdua
Text Box

rdua
Text Box

rdua
Text Box

Aleksandar Jankovic

CpE-213

Project 1

Due Date: 03/04/2014

cycle. Thus, the PC points at the next memory register. This memory register stored the value

#dd to be moved into the accumulator. Also, in the decode cycle the auxiliary register write

enable logic (AUX_WE) was in the ON state, so the byte #dd was stored in the AUX register. In

the execute cycle the accumulator write enable logic (ACC_WE) was in the ON state. This

allowed for the value #dd, stored in the AUX register, to be moved in to the accumulator. PC

was again incremented and was now pointing at the next op-code.

 From the analysis of the MOV A,#dd instruction and the register states, it was obvious

the new instruction set should have produced same write enable logic states for the same cycles.

Hence the logic states and registers values during CLRB A should have been as shown in table 2.

FETCH DECODE EXECUTE

IR_WE ON C2 OFF C2 OFF C2 IR

REG_WE OFF xx OFF xx OFF xx REG_TOP

AUX_WE OFF xx ON 0d ON 0d AUX

PC_WE OFF - ON ↑ ON ↑ PC_ALU/PC

ACC_WE OFF xx OFF xx ON dd ACC

Table 2. Register states and values for different cycles during CLRB A instruction

Instruction Set Modifications:

 The instructions added were CLRB A, with an op-code C2 in hex or 11000010 in binary,

and SETB A, with an op-code D2 in hex or 11010010 in binary. It was obvious these two were

different only in bit-4. Hence, the modifications were same throughout most of the processor for

both op-codes, except in the end where the chosen bit was either cleared (set to 0) or set to 1.

Instruction Register Modifications

 The instruction register write enable was in the ON state during the fetch cycle and in the

OFF state for all other cycles. This was already required, thus no changes had to be made for IR

or IR_WE logic. During the fetch cycle the op-code C2 (or D2) was stored in the IR. This code

was kept there all through the execute cycle. The IR_WE was in the OFF state during both,

decode and execute cycles.

Register Top Modifications

 No modifications had to be applied to this part of the processor, since the registers from

R0 to R7 were not used during accumulator clear or set bit.

Auxiliary Register Modifications

 Auxiliary register did not have to be changed to accommodate for the new instructions.

However, auxiliary write enable (AUX_WE) had to be modified to include C2 and D2 op-codes.

In its original version, AUX_WE logic looked as shown in figure 1 and could have been

expressed as followed:

 ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

rdua
Text Box

rdua
Text Box

rdua
Text Box

rdua
Text Box

Aleksandar Jankovic

CpE-213

Project 1

Due Date: 03/04/2014

Figure 1. Original AUX_WE logic

Modified AUX_WE included C2 and D2 op-codes, where the AUX_WE was set to ON

state for these two op-codes as well. This was shown in figure 2, and the logic was changed to:

 ((̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) (̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅))

Figure 2. Modified AUX_WE logic

Program Counter Modifications

 Since the new instructions were two byte long PC_ALU and the PC_WE had to be

modified to accept new instructions. After the fetch cycle, where the op-code was stored in the

IR, the PC had to be increased in the decode cycle to point at the second byte of the instruction.

The second byte contained the information on the accumulator byte to be cleared or set. This

rdua
Text Box

rdua
Text Box

rdua
Text Box

Aleksandar Jankovic

CpE-213

Project 1

Due Date: 03/04/2014

second byte was stored in the AUX register, as was explained above. The PC was increased

again in the execute cycle, to point at the instruction that was fetched after.

 As shown in figure 3, branch A of the PC_ALU was one of the inputs to the priority

encoder logic. The original branch was expressed as:

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅

Figure 3. Section of the original PC_ALU

Figure 4. Section of the modified PC_ALU

rdua
Text Box

rdua
Text Box

rdua
Text Box

Aleksandar Jankovic

CpE-213

Project 1

Due Date: 03/04/2014

 The modified version of the PC_ALU was shown in figure 4. After the analysis of the

equation for the original A section of the PC_ALU, it was noticed the output was zero for the

fetch cycle (since Q1=0 and Q0=0). During the decode cycle, the output was one. During the

execute cycle the output was zero for the C2 and D2 instructions, but one for the 74H (MOV)

instruction. This modification was applied as shown in figure 4, where the A-section logic was

changed to:

 ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅

The modified PC_ALU included the new instructions, where the A-section was set to

high for the execute cycle, just as for the MOV A,#dd instruction. No other modifications in the

PC_ALU were necessary.

Original PC_WE logic was setup to be in the ON state for decode cycle and for only

certain instructions in the execute cycle. This was shown in figure 5 (below). Modified PC_WE

was setup with additional logic so it would include instructions C2 and D2 in the execute cycle.

The logic added was shown below:

 ̅̅ ̅̅ ̅̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅

Figure 5. Original PC_WE logic

Figure 6. Modified PC_WE logic

rdua
Text Box

rdua
Text Box

rdua
Text Box

rdua
Text Box

Aleksandar Jankovic

CpE-213

Project 1

Due Date: 03/04/2014

Accumulator Register Modifications

 There were no changes to the accumulator register. However, ACC_WE had to be

modified to include the new instructions. Figures 7 and 8 showed the original and modified

ACC_WE logic, respectively. The logic added to the original was described below. The write

enable for the accumulator was in the ON state only in the execute cycle. Modified logic did not

change this, but merely added two new instructions to set the ACC_WE.

 ̅̅ ̅̅ ̅̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅

Figure 7. Original ACC_WE logic

Figure 8. Modified ACC_WE logic

rdua
Text Box

rdua
Text Box

rdua
Text Box

Aleksandar Jankovic

CpE-213

Project 1

Due Date: 03/04/2014

Arithmetic-Logic Unit Modifications

Lastly, but most importantly, ALU was modified. First, two new inputs were added to the

ALU, IR1 and IR0 (shown in figure 9, left). IR1 and IR0 inputs were required in order for

instructions C2 and D2 to operate properly. Second, SET_CLR_PASS_ACCUMULATOR logic

circuit was added, also shown in figure 9, on the right. The added logic was used to regulate

which bit was to be cleared or set, and which bits were supposed to pass only. Thus, inputs from

the accumulator were taken in, then either passed to the output or one bit was modified. IR4 was

the only difference between C2 and D2 instruction byte, so this bit was used to discern between

the two instructions. If the IR4 was zero, a bit from the accumulator was cleared (set to zero). If

the IR4 bit was one, a bit from the accumulator was set to one. Auxiliary register bits

AUX_REG0, AUX_REG1, and AUX_REG2 determined which bit of the accumulator was to be

modified.

Figure 9. Modified ALU (left) and added SET_CLR_PASS_ACCUMULATOR logic (right)

rdua
Text Box

rdua
Text Box

Aleksandar Jankovic

CpE-213

Project 1

Due Date: 03/04/2014

Logic circuit of the new instructions was shown in figure 10. The logic was enabled if

either C2 or D2 input was fed from the IR (110X0010). AUX registers two to zero determined

which bit was changed, and IR4 determined if the bit was changed to zero or one. In case the

logic was not enabled, the input from the accumulator would have just passed to the output

without changes to any of the bits.

 ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅

Figure 10. SET_CLR_PASS_ACCUMULATOR logic

The inside of the SET_CLR_PASS_ACC symbol file was shown in figure 11. It was

noticeable the logic consisted of: accumulator inputs, 3:8-decoder, and eight 2:1 MUX logic

units. The accumulator inputs were fed into the MUX units, where they were passed or changed.

Decoder was used to determine the bit to be changed, by setting the input S0 of one of the MUX

units to one. All the other would have input zero. Table 3 presented the logic behind the decoder.

As explained before, if the enable input was set to one (using instruction register), the inputs of

the auxiliary register decided which S0 input of the MUX units was set to high. Same unit

changed the accumulator bit to one or zero, depending on the IR4 bit. Figure 13 showed the

decoder logic. Lastly, 2:1 MUX units either passed or changed the accumulator bit. Logic was

shown in figure 12 below.

rdua
Text Box

rdua
Text Box

rdua
Text Box

Aleksandar Jankovic

CpE-213

Project 1

Due Date: 03/04/2014

Figure 11. Inside the SET_CLR_PASS_ACC logic

 ̅̅ ̅

Figure 12. MUX 2:1 logic

rdua
Text Box

rdua
Text Box

Aleksandar Jankovic

CpE-213

Project 1

Due Date: 03/04/2014

Enable AUX_REG2 AUX_REG1 AUX_REG0
S0

b7 b6 b5 b4 b3 b2 b1 b0

0 X X X 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 1 0 0 0

1 1 0 0 0 0 0 1 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0

Table 3. Decoder 3:8 of the SET_CLR_PASS_ACC logic

Figure 13. Decoder 3:8 logic

rdua
Text Box

rdua
Text Box

Aleksandar Jankovic

CpE-213

Project 1

Due Date: 03/04/2014

 Besides already described SET_PASS_CLR_ACCUMULATOR logic circuit, two more

were added to the ALU, as presented in figure 14. These were used to in order to keep the

existing instructions unaffected and to prevent any overlapping of the new instructions with

existing ones. Same 2:1 MUX units, shown in figure 12, were used to determine if the input from

SET_PASS_CLR_ACCUMULATOR logic were used, or if the old accumulator output logic

was used. This was decided using LOG_SETBA_CLRBA logic unit, shown in figure 15.

Boolean logic of that circuit was shown below.

Figure 14. Inside the modified ALU

 ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅

Figure 15. LOG_SETBA_CLRBA unit

rdua
Text Box

rdua
Text Box

rdua
Text Box

Aleksandar Jankovic

CpE-213

Project 1

Due Date: 03/04/2014

Testing the Modified WIMP51:

 Three different programs were used in testing the modified WIMP51 processor. All three

tested programs have given satisfactory (expected) results. First one used was to test the CLRB

A instruction. This program was used to load hex number FF into the accumulator and then clear

its bits one by one. The program was given here:

CLRB A Test Program

PC OP-CODE

00 74 MOV A, #FF ;Store FF into accumulator, ACC=FF

01 FF

;ACC=FF

02 C2 CLRB A, #00 ;Clear bit 0 of the accumulator

03 00

;ACC=FE

04 C2 CLRB A, #01 ;Clear bit 1 of the accumulator

05 01

;ACC=FC

06 C2 CLRB A, #02 ;Clear bit 2 of the accumulator

07 02

;ACC=F8

08 C2 CLRB A, #03 ;Clear bit 3 of the accumulator

09 03

;ACC=F0

0A C2 CLRB A, #04 ;Clear bit 4 of the accumulator

0B 04

;ACC=E0

0C C2 CLRB A, #05 ;Clear bit 5 of the accumulator

0D 05

;ACC=C0

0E C2 CLRB A, #06 ;Clear bit 6 of the accumulator

0F 06

;ACC=80

10 C2 CLRB A, #07 ;Clear bit 7 of the accumulator

11 07

;ACC=00

12 80 SJMP rel

;Jump back to here

13 FE

Second testing program, shown below, was used to load hex number 00 into the

accumulator and then set its bits one by one, thus ending with the accumulator value of FF. The

program was given here:

SETB A Test Program

 PC OP-CODE

 00 74 MOV A, #FF ;Store 00 into accumulator, ACC=00

01 00

;ACC=00

 02 D2 SETB A, #00 ;Set bit 0 of the accumulator

03 00

;ACC=01

 04 D2 SETB A, #01 ;Set bit 1 of the accumulator

05 01

;ACC=03

rdua
Text Box

Aleksandar Jankovic

CpE-213

Project 1

Due Date: 03/04/2014

06 D2 SETB A, #02 ;Set bit 2 of the accumulator

07 02

;ACC=07

 08 D2 SETB A, #03 ;Set bit 3 of the accumulator

09 03

;ACC=0F

 0A D2 SETB A, #04 ;Set bit 4 of the accumulator

0B 04

;ACC=1F

 0C D2 SETB A, #05 ;Set bit 5 of the accumulator

0D 05

;ACC=3F

 0E D2 SETB A, #06 ;Set bit 6 of the accumulator

0F 06

;ACC=7F

 10 D2 SETB A, #07 ;Set bit 7 of the accumulator

11 07

;ACC=FF

 12 80 SJMP rel

;Jump back to here

 13 FE

 The last test program was used to make sure no other instructions were affected by the

modifications. This program was given here:

CLRBA and SETB A Test Program

 PC OP-CODE

 00 74 MOV A, #FF ;Store 01 into accumulator, ACC=01

 01 01

;ACC=01

 02 F8 MOV R0,A ;R0=ACC=01

 03 38 ADDC A,R0 ;ACC=ACC+R0=02

 04 D2 SETB A, #03 ;Set bit 3 of the accumulator

 05 03

;ACC=0A

 06 F9 MOV R1,A ;R1=ACC=0A

 07 C4 SWAP A

;Swap upper and lower and upper nibble, ACC=A0

08 C2 CLRB A, #05 ;Clear bit 5 of the accumulator

 09 05

;ACC=80

 0A FA MOV R2,A ;R2=ACC=80

 0B 80 SJMP rel

;Jump back to here

 0C FE

Conclusion:

In this project WIMP51 processor was modified and tested on the Altera board. The task

was to add two more instructions, CLRB A and SETB A, which would access accumulator and

clear or set one bit at the time. This was done by modifying: auxiliary register and its write

enable logic, program counter ALU and the program counter write enable, accumulator write

enable logic, and the ALU. These modifications were tested using three different programs,

which have given expected results, thus proving the functionality of the modified WIMP51.

rdua
Text Box

