CPE-ZI3
Project 1
Due Date: 03/04/2014

Project 1: Create Your Own WIMP51 Version

Objectives:

Objectives were to create a version of WIMP51 processor in Quartus 1l which would
include new instruction set, leaving the basic architecture of the processor intact. The instruction
set assigned was CLRB A and SETB A, or clear bit in the accumulator and set bit in the
accumulator, respectively.

Preliminary Analysis:
Both, CLRB A and SETB A were two byte instructions. The operational code (op-code)
for CLRB A was C2 expressed in hexadecimal numbers (11000010 in binary) and SETB A was

D2 in hexd n the
accumulator pgister
(IR) had to s . Both
bytes of infg d then
passed into t

It we - way
similar to op h was
used to store ess to
the op-code to the
accumulator order
for CyCle patLCIII U UT \.;UlJICU U UIT TITVV TITIotruvtaivil STL. TAVICT L \UCIUVV} UCTSUITUCTU \.a_y\.aIC pﬁttern,

or the register states and values contained for different cycles of Wimp51: fetch, decode, and
execute, during the MOV A #dd instruction set.

l ECUTE
IR WE ON 4R
REG WE | OFf XX | REG TOP
AUX WE | OFf dd | Aux
pc wg | OFFH ™ | pc ALUPC
ACC WE OFF XX OFF XX ON dd ACC

Table 1. Register states and values for different cycles during MOV A #dd instruction

From only instruction register write
enable logic le logic units were in the OFF
state. Thus, t R. During decode and execute
cycles, the IF t value 74H. Program counter
write enable C) was increased in the decode

rdua
Text Box

rdua
Text Box

rdua
Text Box

rdua
Text Box

CpE-Z13
Project 1
Due Date: 03/04/2014

cycle. Thus, ther™=

#dd to be move
enable logic (AU
the execute cyc
allowed for the
was again incrern

From the
the new instruct
Hence the logic

IR_WE

REG WE

AUX_WE

PC_WE

ACC WE
Table 2.

er. This memory register stored the value
decode cycle the auxiliary register write
yte #dd was stored in the AUX register. In
> (ACC_WE) was in the ON state. This
r, to be moved in to the accumulator. PC
Kt op-code.

on and the register states, it was obvious
te enable logic states for the same cycles.
B A should have been as shown in table 2.

EXECUTE
OFF c2 | r

OFF XX | REG TOP
ON 0d | aux

ON ™ | pc ALUPC
ON dd | acc

cycles during CLRB A instruction

Instruction Set Modifications:
The instructions added were CLRB A, with an op-code C2 in hex or 11000010 in binary,
and SETB A, with an op-code D2 in hex or 11010010 in binary. It was obvious these two were
different only in bit-4. Hence, the modifications were same throughout most of the processor for
both op-codes, except in the end where the chosen bit was either cleared (set to 0) or set to 1.

Instruction Register Modifications

The instru
OFF state for all ¢
or IR_WE logic. [
was kept there al
decode and execult

Register Top Mod
No modifi
RO to R7 were not

Auxiliary Registern
Auxiliary

However, auxiliar

In its original ve

and in the
de for IR
This code
'ing both,

sters from

tructions.
op-codes.
ave been

expressed as followed:

AUX_ W

rdua
Text Box

rdua
Text Box

rdua
Text Box

rdua
Text Box

1 1 1

CPE-ZI3
Project 1

Due Date: 03/04/2014

x_0

Llololold]

Figure 1. Original AUX_WE logic

Modified AUX_WE included C2 and D2 op-codes, where the AUX_WE was set to ON

state for these tw

AUX_WE 3

s changed to:

 (Decode

Program Counter Modifications

Since the new instructions were two byte long PC_ALU and the PC_WE had to be
modified to accept new instructions. After the fetch cycle, where the op-code was stored in the
IR, the PC had to be increased in the decode cycle to point at the second byte of the instruction.
The second byte contained the information on the accumulator byte to be cleared or set. This

Figure 2. Modified AUX_WE logic

rdua
Text Box

rdua
Text Box

rdua
Text Box

CpE-213
Project 1
Due Date: 03/04/2014

second byte was store

again in the execute cyc
As shown in fig

encoder logic. The origi

A=Q1-Q0+Q1-QC

The PC was increased

e inputs to the priority

-IR3-IR2-1IR1- IR0

B
]

o'o |2

ol I

'~

i
'

W m e WO w

o
a
b

@

the modified PC_ALU

rdua
Text Box

rdua
Text Box

rdua
Text Box

CpE-213
Project 1
Due Date: 03/04/2014

The modified version of the PC_ALU was shown in flgure 4. After the analysis of the

A £ .l [V~ W | L.l

equation for the original putput was zero for the
fetch cycle (since Q1=0 ; ut was one. During the
execute cycle the output ne for the 74H (MOV)
instruction. This modifica he A-section logic was
changed to:
Amodifi -TRO
The modified PC| e A-section was set to

high for the execute cycle, just as for the MOV A #dd instruction. No other modifications in the
PC_ALU were necessary.

Original PC_WE logic was setup to be in the ON state for decode cycle and for only
certain instructions in the execute cycle. This was shown in figure 5 (below). Modified PC_WE
was setup with additional logic so it would include instructions C2 and D2 in the execute cycle.
The logic added was shown below:

PC_WE, IR0

Figure 6. Modified PC_WE logic

rdua
Text Box

rdua
Text Box

rdua
Text Box

rdua
Text Box

CpE-213
Project 1
Due Date: 03/04/2014

Accumulator Register Modifications

There were no changes to the accumulator reaister However ACC WEFE had ta he
modified to include the new instru d
ACC_WE logic, respectively. The | e
enable for the accumulator was in th Dt

change this, but merely added two ne

ACC—WEmOdified = ACC_WEor

Figure 8. Modified ACC_WE logic

rdua
Text Box

rdua
Text Box

rdua
Text Box

Arithmetic-Logic Unit Modifications

CpE-213
Project 1

Due Date: 03/04/2014

Lastly, but most importantly, ALU was modified. First, two new inputs were added to the

ALU, IR1 and IR
instructions C2 and
circuit was added,
which bit was to be
the accumulator we
the only difference
the two instruction
the IR4 bit was

AUX _REGO, AUX
modified.

N RR IR B B B BN N RN RN N IEE B B R R N N 1N TN I R

d in order for
LATOR logic
ed to regulate
s, inputs from
ified. IR4 was
scern between
set to zero). If

register bits
ator was to be

MUX_OUT_2
MUX_OUT_3
MUX_OUT_4
MUX OUT 5
MUX OUT 6
MUX OUT 7

REEEE

irs ACCS
irs ACCS
ir7 ACC7

- SET CLR PASS_ACCUMULAF

Figure 9. Modified ALU (left) and added SET_CLR_PASS_ACCUMULATOR logic (right)

rdua
Text Box

rdua
Text Box

Logic circuit of the new instr

ctions was shown in figure 1

CpE-213
Project 1
Due Date: 03/04/2014

. The logic was enabled if

either C2 or D2 input was fed from tf
which bit was changed, and IR4 dete
logic was not enabled, the input fror
without changes to any of the bits.

Enable = I}

ers two to zero determined
to zero or one. In case the
2 just passed to the output

accl_1 ACC1

acc0_0 ACCO

~~~~~~~~~~~~~~~~~~ SET CLRPASS ACC }:::t:irreiriesiiiiioisson

Figure 10. SET_CLR_PASS_ACCUMULATOR logic

The inside of the SET_CLR_PASS_ACC symbol file was shown in figure 11. It was
noticeable the logic consisted of: accumulator inputs, 3:8-decoder, and eight 2:1 MUX logic
units. The accumulator inputs were fed into the MUX units, where they were passed or changed.
Decoder was used to determine the bit to be changed, by setting the input SO of one of the MUX
units to one. All the other would have input zero. Table 3 presented the logic behind the decoder.
As explained before, if the enable input was set to one (using instruction register), the inputs of
the auxiliary register decided which SO input of the MUX units was set to high. Same unit
changed the accumulator bit to one or zero, depending on the IR4 bit. Figure 13 showed the
decoder logic. Lastly, 2:1 MUX units either passed or changed the accumulator bit. Logic was

shown in figure 12 below.


rdua
Text Box

rdua
Text Box

rdua
Text Box


CpE-Z13
Project 1
Due Date: 03/04/2014

R ETIR L T

B1 S0
B2 Sz
Enzdle SO

E el

¥ o
e

Figure 11. Inside the SET_CLR_PASS_ACC logic

Z=A-50+B-5S0

Figure 12. MUX 2:1 logic


rdua
Text Box

rdua
Text Box


CpE-213
Project 1
Due Date: 03/04/2014

Enable Al

[®)

S
o
w
o
N
O
[ty
o
o

S I I R R =)
o|lo|lo|r|o|o|o|o|o
o|lo|lo|lo|r|o|lo|jo|o
o|lo|lo|lo|o|r|o|jo|o
o|lo|lo|lo|lo|o|r|o|o
o|lo|lo|lo|lo|o|o|r|o

Table 3. Decoder 3:8 of the SET_CLR_PASS_ACC logic

D_rs,y_,)

Figure 13. Decoder 3:8 logic


rdua
Text Box

rdua
Text Box


CpE-213
Project 1
Due Date: 03/04/2014

Besides already described SET_PASS_CLR_ACCUMULATOR logic circuit, two more
were added to the ALU, as presented in figure 14. These were used to in order to keep the
existing instructions unaffected and to prevent any overlapping of the new instructions with
existing ones. Same 2:1 MUX units, shown in figure 12, were used to determine if the input from
SET_PASS_CLR_ACCUMULATOR logic were used, or if the old accumulator output logic
was used. This was decided using LOG_SETBA CLRBA logic unit, shown in figure 15.
Boolean logic of that circuit was shown below.

Flgure L&, 1fisidce uie moulmneu ALY

g Ir0 LOG
fog_ir_1
og_Ir 2
g Ir 3
log_Ir_5
log_Ir 6
og_ir_7

ms ey ey

Figure 15. LOG_SETBA_CLRBA unit


rdua
Text Box

rdua
Text Box

rdua
Text Box


CPE-ZI3
Project 1
Due Date: 03/04/2014

Testing the Modified WIMP51:

Three different programs were used in testing the modified WIMP51 processor. All three
tested programs have given satisfactory (expected) results. First one used was to test the CLRB
A instruction. This program was used to load hex number FF into the accumulator and then clear
its bits one by one. The program was given here:

CLRB A Test Program
PC OP-CODE
00 74 MOV A, #FF ;Store FF into accumulator, ACC=FF
01 FF ;ACC=FF
02 Cc2 CLRB A, #00 ;Clear bit 0 of the accumulator
03 00 ;ACC=FE
04 Cc2 CLRB A, #01 ;Clear bit 1 of the accumulator
05 01 ;ACC=FC
06 Cc2 CLRB A, #02 ;Clear bit 2 of the accumulator
07 02 ;ACC=F8
08 Cc2 CLRB A, #03 ;Clear bit 3 of the accumulator
09 03 ;ACC=F0
0A Cc2 CLRB A, #04 ;Clear bit 4 of the accumulator
0B 04 ;ACC=EQ
0oC Cc2 CLRB A, #05 ;Clear bit 5 of the accumulator
oD 05 ;ACC=CO0
OE Cc2 CLRB A, #06 ;Clear bit 6 of the accumulator
OF 06 ;ACC=80
10 Cc2 CLRB A, #07 ;Clear bit 7 of the accumulator
11 07 ;ACC=00
12 80 SIMP rel ;Jump back to here

13 FE

Second testing program, shown below, was used to load hex number 00 into the
accumulator and then set its bits one by one, thus ending with the accumulator value of FF. The
program was given here:

SETB A Test Program
PC OP-CODE
00 74 MOV A, #FF ;Store 00 into accumulator, ACC=00
01 00 ;ACC=00
02 D2 SETB A, #00 ;Set bit 0 of the accumulator
03 00 ;ACC=01
04 D2 SETB A, #01 ;Set bit 1 of the accumulator

05 01 ;ACC=03


rdua
Text Box


06
07
08
09
0A
0B
0C
0D
OE
OF
10
11
12
13

D2
02
D2
03
D2
04
D2
05
D2
06
D2
07
80
FE

CpE-213
Project 1
Due Date: 03/04/2014

SETB A, #02 ;Set bit 2 of the accumulator
;ACC=07

SETB A, #03 ;Set bit 3 of the accumulator
;ACC=0F

SETB A, #04 ;Set bit 4 of the accumulator
;ACC=1F

SETB A, #05 ;Set bit 5 of the accumulator
;ACC=3F

SETB A, #06 ;Set bit 6 of the accumulator
;ACC=TF

SETB A, #07 ;Set bit 7 of the accumulator
;ACC=FF

SIMP rel ;Jump back to here

The last test program was used to make sure no other instructions were affected by the
modifications. This program was given here:

CLRBA and SETB A Test Program

PC OP-CODE
00 74
01 01
02 F8
03 38
04 D2
05 03
06 F9
07 C4
08 (o7
09 05
0A FA
0B 80
0C FE
Conclusion:

MOV A, #FF ;Store 01 into accumulator, ACC=01
;ACC=01

MOV RO,A ;RO=ACC=01

ADDC A,RO ;ACC=ACC+R0=02

SETB A, #03 ;Set bit 3 of the accumulator
;ACC=0A

MOV R1,A ;R1=ACC=0A

SWAP A ;Swap upper and lower and upper nibble, ACC=A0

CLRB A, #05 ;Clear bit 5 of the accumulator
;ACC=80

MOV R2,A ;R2=ACC=80

SIMP rel ;Jump back to here

In this project WIMP51 processor was modified and tested on the Altera board. The task
was to add two more instructions, CLRB A and SETB A, which would access accumulator and
clear or set one bit at the time. This was done by modifying: auxiliary register and its write
enable logic, program counter ALU and the program counter write enable, accumulator write
enable logic, and the ALU. These modifications were tested using three different programs,
which have given expected results, thus proving the functionality of the modified WIMP5L1.


rdua
Text Box




