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Project 1: Create Your Own WIMP51 Version 

 

 

 

 

Objectives: 

Objectives were to create a version of WIMP51 processor in Quartus II which would 

include new instruction set, leaving the basic architecture of the processor intact. The instruction 

set assigned was CLRB A and SETB A, or clear bit in the accumulator and set bit in the 

accumulator, respectively.  

 

Preliminary Analysis: 

Both, CLRB A and SETB A were two byte instructions. The operational code (op-code) 

for CLRB A was C2 expressed in hexadecimal numbers (11000010 in binary) and SETB A was 

D2 in hexadecimal (11010010 in binary). The goal was to access a specific bit in the 

accumulator and change it to 0 or 1. These were two byte instructions, so the instruction register 

(IR) had to store the op-code and the auxiliary register (AUX) had to store the bit address. Both 

bytes of information were fed into the arithmetic-logic unit (ALU) at the same time, and then 

passed into the accumulator from the ALU.  

It was noticed that the required instructions (CLRB A and SETB A) were in a way 

similar to op-code MOV A,#dd (74H,dddddddd). This was also a two byte instruction which was 

used to store a one byte number (#dd) into the accumulator. Thus, the ALU had to have access to 

the op-code (74H in this case) stored in the IR and the number (#dd to be placed into the 

accumulator) stored in the AUX. The MOV A,#dd instruction was therefore analyzed in order 

for cycle pattern to be copied to the new instruction set. Table 1 (below) described cycle pattern, 

or the register states and values contained for different cycles of Wimp51: fetch, decode, and 

execute, during the MOV A,#dd instruction set.    

 

 
FETCH DECODE EXECUTE 

 
IR_WE ON 74 OFF 74 OFF 74 IR 

REG_WE OFF xx OFF xx OFF xx REG_TOP 

AUX_WE OFF xx ON dd ON dd AUX 

PC_WE OFF - ON ↑ ON ↑ PC_ALU/PC 

ACC_WE OFF xx OFF xx ON dd ACC 

Table 1. Register states and values for different cycles during MOV A,#dd instruction 

 

 From the table 1, it was noticeable during the fetch cycle only instruction register write 

enable logic (IR_WE) was in the ON state, all the other write enable logic units were in the OFF 

state. Thus, the op-code 74H (01110100) was stored only in the IR. During decode and execute 

cycles, the IR_WE was in the OFF state, so the IR kept its first value 74H. Program counter 

write enable logic was in the ON state and the program counter (PC) was increased in the decode 
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cycle. Thus, the PC points at the next memory register. This memory register stored the value 

#dd to be moved into the accumulator. Also, in the decode cycle the auxiliary register write 

enable logic (AUX_WE) was in the ON state, so the byte #dd was stored in the AUX register. In 

the execute cycle the accumulator write enable logic (ACC_WE) was in the ON state. This 

allowed for the value #dd, stored in the AUX register, to be moved in to the accumulator. PC 

was again incremented and was now pointing at the next op-code.  

 From the analysis of the MOV A,#dd instruction and the register states, it was obvious 

the new instruction set should have produced same write enable logic states for the same cycles. 

Hence the logic states and registers values during CLRB A should have been as shown in table 2.  

 

 
FETCH DECODE EXECUTE 

 
IR_WE ON C2 OFF C2 OFF C2 IR 

REG_WE OFF xx OFF xx OFF xx REG_TOP 

AUX_WE OFF xx ON 0d ON 0d AUX 

PC_WE OFF - ON ↑ ON ↑ PC_ALU/PC 

ACC_WE OFF xx OFF xx ON dd ACC 

Table 2. Register states and values for different cycles during CLRB A instruction 

 

 

Instruction Set Modifications: 

 The instructions added were CLRB A, with an op-code C2 in hex or 11000010 in binary, 

and SETB A, with an op-code D2 in hex or 11010010 in binary. It was obvious these two were 

different only in bit-4. Hence, the modifications were same throughout most of the processor for 

both op-codes, except in the end where the chosen bit was either cleared (set to 0) or set to 1.  

 

Instruction Register Modifications 

 The instruction register write enable was in the ON state during the fetch cycle and in the 

OFF state for all other cycles. This was already required, thus no changes had to be made for IR 

or IR_WE logic. During the fetch cycle the op-code C2 (or D2) was stored in the IR. This code 

was kept there all through the execute cycle. The IR_WE was in the OFF state during both, 

decode and execute cycles.  

  

Register Top Modifications 

 No modifications had to be applied to this part of the processor, since the registers from 

R0 to R7 were not used during accumulator clear or set bit.  

 

Auxiliary Register Modifications  

 Auxiliary register did not have to be changed to accommodate for the new instructions. 

However, auxiliary write enable (AUX_WE) had to be modified to include C2 and D2 op-codes. 

In its original version, AUX_WE logic looked as shown in figure 1 and could have been 

expressed as followed: 

 

                  ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                   
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Figure 1. Original AUX_WE logic 

 

Modified AUX_WE included C2 and D2 op-codes, where the AUX_WE was set to ON 

state for these two op-codes as well. This was shown in figure 2, and the logic was changed to: 

 

       ((           ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  (           ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅         ̅̅ ̅̅ ̅))         

          
 

 
 

Figure 2. Modified AUX_WE logic 

 

Program Counter Modifications 

 Since the new instructions were two byte long PC_ALU and the PC_WE had to be 

modified to accept new instructions. After the fetch cycle, where the op-code was stored in the 

IR, the PC had to be increased in the decode cycle to point at the second byte of the instruction. 

The second byte contained the information on the accumulator byte to be cleared or set. This 
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second byte was stored in the AUX register, as was explained above. The PC was increased 

again in the execute cycle, to point at the instruction that was fetched after. 

 As shown in figure 3, branch A of the PC_ALU was one of the inputs to the priority 

encoder logic. The original branch was expressed as: 

 

    ̅̅ ̅̅          ̅̅ ̅̅     ̅̅ ̅̅ ̅             ̅̅ ̅̅ ̅        ̅̅̅̅       ̅̅ ̅̅     ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅ 
 

 

 
 

Figure 3. Section of the original PC_ALU  

 

 
 

Figure 4. Section of the modified PC_ALU 
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 The modified version of the PC_ALU was shown in figure 4. After the analysis of the 

equation for the original A section of the PC_ALU, it was noticed the output was zero for the 

fetch cycle (since Q1=0 and Q0=0). During the decode cycle, the output was one. During the 

execute cycle the output was zero for the C2 and D2 instructions, but one for the 74H (MOV) 

instruction. This modification was applied as shown in figure 4, where the A-section logic was 

changed to: 

  
                         ̅̅ ̅̅         ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅         ̅̅ ̅̅ ̅  

 

The modified PC_ALU included the new instructions, where the A-section was set to 

high for the execute cycle, just as for the MOV A,#dd instruction. No other modifications in the 

PC_ALU were necessary. 

Original PC_WE logic was setup to be in the ON state for decode cycle and for only 

certain instructions in the execute cycle. This was shown in figure 5 (below). Modified PC_WE 

was setup with additional logic so it would include instructions C2 and D2 in the execute cycle. 

The logic added was shown below: 

 

                                               ̅̅ ̅̅ ̅̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅         ̅̅ ̅̅ ̅  

 

 

 
 

Figure 5. Original PC_WE logic 

 

 
 

Figure 6. Modified PC_WE logic 
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Accumulator Register Modifications 

 There were no changes to the accumulator register. However, ACC_WE had to be 

modified to include the new instructions. Figures 7 and 8 showed the original and modified 

ACC_WE logic, respectively. The logic added to the original was described below. The write 

enable for the accumulator was in the ON state only in the execute cycle. Modified logic did not 

change this, but merely added two new instructions to set the ACC_WE. 

 

                                                 ̅̅ ̅̅ ̅̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅         ̅̅ ̅̅ ̅  

 

 

 
  

Figure 7. Original ACC_WE logic 

 

 
 

Figure 8. Modified ACC_WE logic 
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Arithmetic-Logic Unit Modifications 

Lastly, but most importantly, ALU was modified. First, two new inputs were added to the 

ALU, IR1 and IR0 (shown in figure 9, left). IR1 and IR0 inputs were required in order for 

instructions C2 and D2 to operate properly. Second, SET_CLR_PASS_ACCUMULATOR logic 

circuit was added, also shown in figure 9, on the right. The added logic was used to regulate 

which bit was to be cleared or set, and which bits were supposed to pass only. Thus, inputs from 

the accumulator were taken in, then either passed to the output or one bit was modified. IR4 was 

the only difference between C2 and D2 instruction byte, so this bit was used to discern between 

the two instructions. If the IR4 was zero, a bit from the accumulator was cleared (set to zero). If 

the IR4 bit was one, a bit from the accumulator was set to one. Auxiliary register bits 

AUX_REG0, AUX_REG1, and AUX_REG2 determined which bit of the accumulator was to be 

modified.   

 

              
 

Figure 9. Modified ALU (left) and added SET_CLR_PASS_ACCUMULATOR logic (right) 
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Logic circuit of the new instructions was shown in figure 10. The logic was enabled if 

either C2 or D2 input was fed from the IR (110X0010). AUX registers two to zero determined 

which bit was changed, and IR4 determined if the bit was changed to zero or one. In case the 

logic was not enabled, the input from the accumulator would have just passed to the output 

without changes to any of the bits.  

 

                  ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅         ̅̅ ̅̅ ̅ 
 

 

 
 

Figure 10. SET_CLR_PASS_ACCUMULATOR logic 

 

The inside of the SET_CLR_PASS_ACC symbol file was shown in figure 11. It was 

noticeable the logic consisted of: accumulator inputs, 3:8-decoder, and eight 2:1 MUX logic 

units. The accumulator inputs were fed into the MUX units, where they were passed or changed. 

Decoder was used to determine the bit to be changed, by setting the input S0 of one of the MUX 

units to one. All the other would have input zero. Table 3 presented the logic behind the decoder. 

As explained before, if the enable input was set to one (using instruction register), the inputs of 

the auxiliary register decided which S0 input of the MUX units was set to high. Same unit 

changed the accumulator bit to one or zero, depending on the IR4 bit. Figure 13 showed the 

decoder logic. Lastly, 2:1 MUX units either passed or changed the accumulator bit. Logic was 

shown in figure 12 below.      

rdua
Text Box

rdua
Text Box

rdua
Text Box



Aleksandar Jankovic 

CpE-213 

Project 1 

Due Date: 03/04/2014 

 
 

Figure 11. Inside the SET_CLR_PASS_ACC logic 

 

   
      ̅̅ ̅       

 

 
 

Figure 12. MUX 2:1 logic 
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Enable AUX_REG2 AUX_REG1 AUX_REG0 
S0 

b7 b6 b5 b4 b3 b2 b1 b0 

0 X X X 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 1 

1 0 0 1 0 0 0 0 0 0 1 0 

1 0 1 0 0 0 0 0 0 1 0 0 

1 0 1 1 0 0 0 0 1 0 0 0 

1 1 0 0 0 0 0 1 0 0 0 0 

1 1 0 1 0 0 1 0 0 0 0 0 

1 1 1 0 0 1 0 0 0 0 0 0 

1 1 1 1 1 0 0 0 0 0 0 0 

 

Table 3. Decoder 3:8 of the SET_CLR_PASS_ACC logic 

 

 

 

 
 

Figure 13. Decoder 3:8 logic 
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 Besides already described SET_PASS_CLR_ACCUMULATOR logic circuit, two more 

were added to the ALU, as presented in figure 14. These were used to in order to keep the 

existing instructions unaffected and to prevent any overlapping of the new instructions with 

existing ones. Same 2:1 MUX units, shown in figure 12, were used to determine if the input from 

SET_PASS_CLR_ACCUMULATOR logic were used, or if the old accumulator output logic 

was used. This was decided using LOG_SETBA_CLRBA logic unit, shown in figure 15. 

Boolean logic of that circuit was shown below.      

 

 

 
 

Figure 14. Inside the modified ALU 

 

 

                     ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅         ̅̅ ̅̅ ̅  
 

   
 

Figure 15. LOG_SETBA_CLRBA unit 
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Testing the Modified WIMP51: 

 Three different programs were used in testing the modified WIMP51 processor. All three 

tested programs have given satisfactory (expected) results. First one used was to test the CLRB 

A instruction. This program was used to load hex number FF into the accumulator and then clear 

its bits one by one. The program was given here: 

 

CLRB A Test Program 

PC OP-CODE 

   
00 74 MOV A, #FF ;Store FF into accumulator, ACC=FF 

01 FF 

  

;ACC=FF 

02 C2 CLRB A, #00 ;Clear bit 0 of the accumulator 

03 00 

  

;ACC=FE 

04 C2 CLRB A, #01 ;Clear bit 1 of the accumulator 

05 01 

  

;ACC=FC 

06 C2 CLRB A, #02 ;Clear bit 2 of the accumulator 

07 02 

  

;ACC=F8 

08 C2 CLRB A, #03 ;Clear bit 3 of the accumulator 

09 03 

  

;ACC=F0 

0A C2 CLRB A, #04 ;Clear bit 4 of the accumulator 

0B 04 

  

;ACC=E0 

0C C2 CLRB A, #05 ;Clear bit 5 of the accumulator 

0D 05 

  

;ACC=C0 

0E C2 CLRB A, #06 ;Clear bit 6 of the accumulator 

0F 06 

  

;ACC=80 

10 C2 CLRB A, #07 ;Clear bit 7 of the accumulator 

11 07 

  

;ACC=00 

12 80 SJMP rel 

 

;Jump back to here 

13 FE 

     

 

Second testing program, shown below, was used to load hex number 00 into the 

accumulator and then set its bits one by one, thus ending with the accumulator value of FF. The 

program was given here: 

 

 

SETB A Test Program 

  PC OP-CODE 

     00 74 MOV A, #FF ;Store 00 into accumulator, ACC=00 

01 00 

  

;ACC=00 

  02 D2 SETB A, #00 ;Set bit 0 of the accumulator 

03 00 

  

;ACC=01 

  04 D2 SETB A, #01 ;Set bit 1 of the accumulator 

05 01 

  

;ACC=03 
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06 D2 SETB A, #02 ;Set bit 2 of the accumulator 

07 02 

  

;ACC=07 

  08 D2 SETB A, #03 ;Set bit 3 of the accumulator 

09 03 

  

;ACC=0F 

  0A D2 SETB A, #04 ;Set bit 4 of the accumulator 

0B 04 

  

;ACC=1F 

  0C D2 SETB A, #05 ;Set bit 5 of the accumulator 

0D 05 

  

;ACC=3F 

  0E D2 SETB A, #06 ;Set bit 6 of the accumulator 

0F 06 

  

;ACC=7F 

  10 D2 SETB A, #07 ;Set bit 7 of the accumulator 

11 07 

  

;ACC=FF 

  12 80 SJMP rel 

 

;Jump back to here 

 13 FE 

      

 The last test program was used to make sure no other instructions were affected by the 

modifications. This program was given here: 

 

CLRBA and SETB A Test Program 

    PC OP-CODE 

       00 74 MOV A, #FF ;Store 01 into accumulator, ACC=01 

 01 01 

  

;ACC=01 

    02 F8 MOV R0,A ;R0=ACC=01 

   03 38 ADDC A,R0 ;ACC=ACC+R0=02 

   04 D2 SETB A, #03 ;Set bit 3 of the accumulator 

  05 03 

  

;ACC=0A 

    06 F9 MOV R1,A ;R1=ACC=0A 

   07 C4 SWAP A 

 

;Swap upper and lower and upper nibble, ACC=A0 

08 C2 CLRB A, #05 ;Clear bit 5 of the accumulator 

  09 05 

  

;ACC=80 

    0A FA MOV R2,A ;R2=ACC=80 

   0B 80 SJMP rel 

 

;Jump back to here 

   0C FE 

        

 

Conclusion:  

In this project WIMP51 processor was modified and tested on the Altera board. The task 

was to add two more instructions, CLRB A and SETB A, which would access accumulator and 

clear or set one bit at the time. This was done by modifying: auxiliary register and its write 

enable logic, program counter ALU and the program counter write enable, accumulator write 

enable logic, and the ALU. These modifications were tested using three different programs, 

which have given expected results, thus proving the functionality of the modified WIMP51. 
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