
MISSOURI UNIVERSITY OF SCIENCE & TECHNOLOGY

BCD Arithmetic
Implementing the Decimal Adjust Command in WIMP51

CpE-213 Sp 2014 Project 1

3/17/2014

Abstract: The 8051 Microcontroller “decimal adjust” (DA) command was to be implemented
for WIMP51. This function was to be programmed so that it could be called by the standard
8051 instruction byte. Moreover, the successful implementation would leave all other
functionality of the processor unaffected.

1

Table of Contents

2 Introduction

2 Description of Work

6 Conclusion

7 Appendix A—Test Program

2

Introduction

The 8051 microcontroller has several functions not available in the WIMP51. One such
function is “decimal adjust”, which converts single byte hexadecimal numbers to binary-
coded decimal (BCD) and allows for decimal arithmetic to be performed on what are in fact
binary numbers. The assembly level command for 8051’s decimal adjust is DA; and the
machine code is D4H. For convenience, the 8051 instruction was retained in the WIMP51
implementation.

Description of Work

The majority of modifications to the WIMP51 affected only the arithmetic logic unit (ALU).
The sole exception was the addition of inputs to the ALU from the least significant two bits
of the instruction register (IR1 and IR0), in order to avoid possible conflicts between DA and
SETB, since their instructions shared the same most significant four bits. (Time was not
taken to determine whether there was actually a conflict here; but during troubleshooting,
the extra inputs were added to reduce the number of possible sources of malfunction.)

The algorithm for BCD was simple enough. When two numbers were added, the result was
checked to ensure that neither the most significant nibble (MSN) nor the least significant
nibble (LSN) was greater than 9H. If either nibble was greater than 9H, then 6H was added
to that nibble in order to “correct” the result. Also, if the carry bit (CY) or the auxiliary
carry bit (AC) was ‘1’, then 6H was to be added to the MSN or the LSN, respectively.

The main change to the ALU consisted of inserting eight 4:1 MUX’s between the inputs from
the auxiliary register (AUX_REG_n) and the B inputs of the 8-bit ripple adder (B_n). The
aux register values were routed through inputs 00 and 10 of the corresponding MUX, these
two inputs simply being jumpered together. Input 01 of each MUX was connected directly
to ground. Inputs 11 were connected to logic 0 (ground) and 1 (VCC) in the following
pattern: 0110 0110. The switching input S_0 on each MUX was connected to logic
designed to return ‘1’ if and only if the instruction register contained D4H (1101 0100).
And inputs S_1 corresponding to the MSN and the LSN of the auxiliary register were made
to be ‘1’ whenever the carry bit and the auxiliary carry bit were ‘1’, respectively.

With this configuration, the following five outputs were possible:

Figure 1—BCD MUX Inputs and Outputs

S1 (MSN) S1 (LSN) S0 MUX Outputs
X X 0 AUX_REG_7-0

0 0 1 0000 0000

0 1 1 0000 0110

1 0 1 0110 0000

1 1 1 0110 0110

rdua
Text Box

rdua
Text Box

3

The logic circuit designed to control the S_0 inputs was simply an eight-input AND gate
with four NOT gates complimenting the values of IR5, IR3, IR1 and IR0, as shown in Figure 2,
below. Thus the state of S_0 was ‘1’ only for the D4H instruction, as mentioned before.

Figure 2—DA Instruction Decoding

The auxiliary carry used to control the state of the S_1’s in the LSN did not already exist in
the WIMP51, and therefore had to be created before DA could be implemented. This was
done simply by tapping the internal carry bit from the fourth to the fifth adder in the ripple
adder, as shown in Figure 3. It was also necessary to ensure that this AC bit would be
latched during the whole DA cycle. To accomplish this, the 2:1 MUX and D flip-flop circuit
that was already being used to hold the carry bit was duplicated for the AC. In both cases,
the state of the bit would be held until a SETB or CLR instruction was received from the IR.

rdua
Text Box

rdua
Text Box

4

Figure 3—Auxiliary Carry

rdua
Text Box

5

Figure 4—Latching of AC Bit

Two additional modifications were found to be necessary before DA would function
properly. First, the MSN of the DA instruction (DH or 1101) had to be added as a condition
for accumulator write-enable in the L_A_Select object (see Figure 5). And second, the
carry bit being held in the aforementioned latch had to be blocked from the ripple adder
carry-in during the DA operation. This was necessary, because one of the conditions for DA
adding 0110 to the MSN is if CY is 1. But if CY is passed into the adder carry-in in this case,
then 0111 would be added to the MSN instead of 0110—‘7’ instead of ‘6’. Figure 6 shows
the 2:1 MUX inserted in the path of the CY/carry-in to block it during DA.

rdua
Text Box

rdua
Text Box

6

Figure 5—LA Select

Figure 6—Block Carry-in for DA

Finally, the DA instruction, as well as the entire standard WIMP51 instruction set, was
tested to ensure that everything was working properly. The test code used can be found in
Appendix A. Lines 00-1B of this program demonstrate the functionality of the DA
instruction, and line 1B-38 make us of all of the other instructions.

Conclusion

As mentioned above, the problem seemed simple enough—the problem of how to
implement BCD arithmetic in WIMP51. Still, some trial and error proved necessary before
a fully functioning solution was found. However, such unforeseen difficulties cannot help
but further the learning process.

rdua
Text Box

7

Appendix A—Test Program

Code Accumulator Notes
00 CLR C C3H 00H
01 MOV A, #00H 74H 00H
02 00H 00H
03 ADDC A, #0AH 34H 00H
04 0AH 00H
05 DA A D4H 0AH LSN>9
06 ADDC A, #F0H 34H 10H
07 F0H 10H
08 DA A D4H 00H C=1
09 CLR C C3H 60H
0A ADDC A, #60 34H 60H
0B 60H 60H
0C DA A D4H C0H MSN>9
0D CLR C C3H 20H
0E SWAP A C4H 20H
0F ADDC A, #0F 34H 02H
10 0FH 02H
11 DA A D4H 11H AC=1
12 CLR C C3H 17H
13 ADDC A, #FB 34H 17H
14 FBH 17H
15 DA A D4H 12H C=AC=1
16 CLR C C3H 78H
17 ADDC A, #44 34H 78H
18 44H 78H
19 DA A D4H BCH MSN, LSN>9
1A CLR C C3H 22H
1B DA A D4H 22H MSN, LSN<9, C=AC=0
1C MOV A, #05H 74H 22H
1D 05H 22H
1E ADDC A, #07H 34H 05H
1F 07H 05H
20 MOV R7, A FFH 0CH
21 ADDC A, R7 3FH 0CH
22 SWAP A C4H 18H
23 MOV A, R7 EFH 81H
24 XRL A, R7 6FH 0CH
25 ORL A, R7 4FH 00H
26 SWAP A C4H 0CH
27 ADDC A, R7 3FH C0H
28 ANL A, R7 5FH CCH
29 SETB C D3H 0CH
2A CLR C C3H 0CH

8

2B MOV A, #04H 74H 0CH
C2 04H 0CH
2D X: CLR C C3H 04H
2E ADDC A, #FFH 34H 04H
2F FFH 04H
30 JZ Y 60H 03H,02H,01H,00H
31 02H
32 SJMP X 80H
33 F9H
34 Y: SETB C D3H 00H
35 ADDC A, #02H 34H 00H
36 02H 00H
37 Z: SJMP Z 80H 03H
38 FEH 03H

