Class A Amplifier

The class A amplifier used a heat sink. For these values the power resistors were used. The voltage across the potentiometers was the voltage across the SS voltage source. The I_C current was 5.192W.

Table-1 (data recorded in lab for efficiency calculations)
figure – 2 (Class A Input to the Op-Amp, and Output from the power amplifier)

Class B Amplifier

After the class B amplifier was built and connected to the DC Power Supply the output signal showed bipolar transistors. Both transistors have input signal will supply the turn on the FFT the frequencies that compose the frequency. In figure-5 the 1st Harmonic 4. From this graph (figure-5) the total
Figure – 3 (Class B amplifier diagram)

Figure – 4 (Class B input and output to the Op Amp)
Class AB Amplifier

By biasing the Tip 31 and Tip 32 transistors the cross over distortion at the output of the class B amplifier can be eliminated, since the input no longer supplies the voltage to bias the transistor in the active region. The circuit in figure-3 includes the Op Amp, the driver circuit and the class AB amplifier without the R_E resistors. After this circuit was left on for several minutes the transistors became very hot, eventually melting the breadboard. The circuit had reached thermal runaway, and becomes hot small power dissipation is reduced from the class AB.
Figure – 7 (Class AB Amplifier Output Ch2, Op Amp Input Ch1)