Project 5: D/A and A/D Converters

Figure 3: voltage outputs

After building the circuit, the voltage of each level was measured in order to compare to the calculated levels (table 2 and figures 5-6). Then, the priority encoder was downloaded to the Altera board, and the
outputs of the circuit were connected to the expansion header on the Altera board. The pin assignments were made, and as the voltage increased, the 4 logic levels increased in order.

Logic level	Trial 1 (\mathbf{V})	Trial 2 (\mathbf{V})
0000	0	0
0001	0.17758	0.1718
0010	0.49732	0.48038
0011	0.78455	0.82613
0100	1.13348	1.16044
0101	1.4524	1.4051
0110	1.7228	1.7277
0111	2.0955	2.1036
1000	2.3584	2.4575
1001	2.7118	2.6591
1010	2.9829	2.9771
1011	3.3469	3.282
1100	3.6028	3.6346
1101	3.9735	3.9271
1110	4.2247	4.268
1111	4.5616	4.6434

Table 2: minimum voltage required for each logic level

Figure 5: plot of voltage increase

Figure 6: plot of voltage increase trial 2

EE 254
Project 5
12/6/13

$$
\begin{aligned}
& V_{15}=\frac{29 V_{\text {ret }}}{16}=4.53125 \mathrm{~V} \\
& V_{14}=\frac{27 V_{\text {ret }}}{16}=4.21875 \mathrm{~V} \\
& V_{13}=\frac{25 \mathrm{~V}_{\text {ret }}}{16}=3.90625 \mathrm{~V} \\
& V_{12}=\frac{23 \mathrm{Vret}}{16}=3.59375 \mathrm{~V} \\
& V_{11}=\frac{21 V_{\text {ret }}}{16}=3.28125 \mathrm{~V} \\
& V_{10}=\frac{19 V_{\text {ref }}}{16}=2.96875 \mathrm{~V} \\
& V_{9}=\frac{17 V_{\text {ref }}}{16}=2.65625 \mathrm{~V} \\
& V_{8}=\frac{15 V_{\text {ret }}}{16}=2.34375 \mathrm{~V} \\
& V_{7}=\frac{13 V_{\text {ret }}}{16}=2.03125 \mathrm{~V} \\
& V_{6}=\frac{11 V_{\text {ref }}}{16}=1.71875 \mathrm{~V} \\
& V_{5}=\frac{9 V_{\text {ret }}}{16}=1.40625 \mathrm{~V} \\
& V_{4}=\frac{V_{\text {ret }}}{16 R}\left(3 R+R_{2}\right)=\frac{7 \mathrm{~V}_{\text {ret }}}{16}=1.09375 \mathrm{~V} \\
& V_{3}=\frac{V_{\text {ret }}}{16 R}(2 R+2 / 2)=\frac{5 V_{\text {ret }}}{32}=0.78125 \mathrm{~V} \\
& V_{2}=\frac{V_{\text {ret }}}{16 R}(R+R / 2)=\frac{3 \mathrm{~V} \text { ret }}{32}=0.46875 \mathrm{~V} \\
& V_{1}=\frac{V_{\text {ref }}}{16 R}\left(\frac{R}{2}\right)=\frac{V_{\text {ref }}}{32}=0.15625 \mathrm{~V} \\
& V_{\text {ref }}=5 \mathrm{~V}
\end{aligned}
$$

