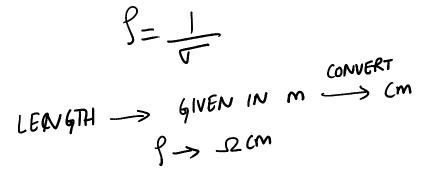
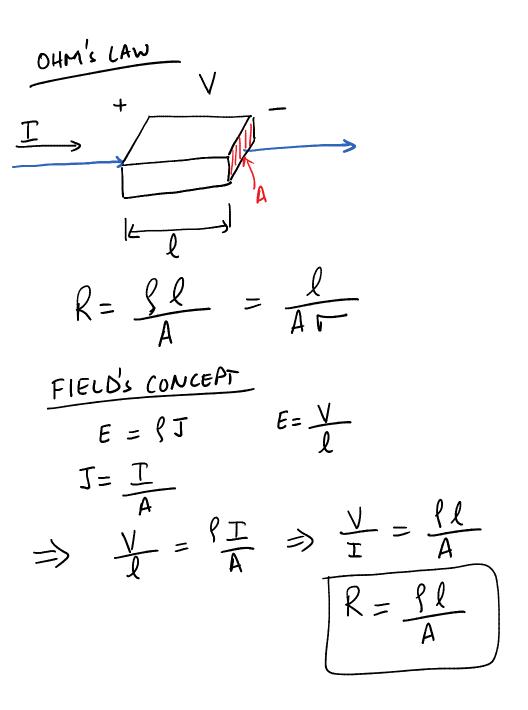
Monday, January 07, 2013 11:59 AM

UNIT -> A Τi UNIT $\rightarrow A/m^2$ CURRENT DENSITY ->> J AREA UNIT -> VOLT ___> V ፇ VOLTAGE POLARITY + OHM'S LAW V=IR R V= -IR + Ī Ī IN CHARACT ERISTIC I RESISTORS -> PASSIVE CONVENTION POWER IS ABSORBED -> +


Monday, January 07, 2013 12:15 PM

CURRENT
DEF.
$$\rightarrow$$
 IA \rightarrow IC/S = dgr
ULTAGE
IV \rightarrow WORK / CHARGE OF I JOULE / ICOLOUMB
FOR MOVING A POSITIVE (HARGE
BETWEEN TWO POINTS
E \rightarrow ELECTRIC FIELD \rightarrow UNITS \rightarrow V/m


Monday, January 07, 2013 12:17 PM

RESISTIVITY

$$\frac{\text{CONDUCTIVITY}}{P} = \frac{1}{P} (\Omega^{-1})^{-1}$$

Monday, January 07, 2013 12:19 PM

Monday, January 07, 2013 12:22 PM

CLASSIPY SOLIDS BASED ON
RESIGTIVITY / CONDUCTIVITY
INSULATORS
$$\rightarrow$$
 ST rJ
CONDUCTORS \rightarrow ST rJ
CONDUCTORS \rightarrow ST rT
PORCELAIN \rightarrow S = $10^{12} - 10^{14} \pm 0.000$
Cu \rightarrow S = $1.715 \times 10^{16} \pm 0.000$
R = $\frac{PL}{A}$
S \rightarrow IS TEMPERATURE DEPENDENT
I(T) = $120 [1 + \sqrt{20} (T - 20)]$
TOFIND \downarrow GIVEN \downarrow GIVEN
Q20 \rightarrow TEMPERATURE COEFFICIENT
OF RECISTIVITY
(TEMPERATURE DEPENDENT)
SPECIFIED!

Monday, January 07, 2013 12:26 PM

Awb #12
$$l = lo[m]$$

d (DIAMETER) = 2.053 [mm]
AREA 'A' = $\frac{T}{4}$ (0.2053)² (m²)
Cu $S = 1.725 \times 10^{6}$ $\frac{\Omega}{2}$ (m)
 $R = \frac{Pl}{A} = \frac{(lo)(1.725 \times 10^{6})}{(T)4)(0.2053)^{2}}$
 $= \frac{C.21 \times 10^{6} \text{ s}^{2}}{(T)4}$

Monday, January 07, 2013 12:28 PM

$$\begin{array}{rcl} Cu \\ \alpha_{20} &=& 3\cdot9 \times \iota^{-2} & c^{-1} \\ \beta_{20} &=& \frac{1\cdot7\times \iota^{-6} & \Omega & cm}{2} \\ \beta_{10} &=& \frac{1\cdot7\times \iota^{-6} & \Omega & cm}{2} \\ \beta_{11} &=& \beta_{20} & \left[1+ & \alpha_{20} & (T-20)\right] \\ T &=& 3 \\ T &=& 3 \\ T &=& 3 \\ T &=& 273 + T(*C) \\ T(K) &=& 273 + T(*C) \\ T(K$$