FORWARD BIAS (FB)

* Electrostatic potential barrier at the junction is lowered by V_F from V_0
 \[V_F \text{ is in opposite polarity as } V_0 \]

* E Field goes down \(\Rightarrow \) Applied E is in opposite direction as built-in E

* Diffusion current increases \(\Rightarrow \) Injection of carriers (majority) in the P and N regions. Since the barrier is lowered, majority carriers have sufficient energy to cause an increase in current!

* Drift current remains the same \(\Rightarrow \) It depends only on EHP generation of minority carriers in the majority regions
* SOME USEFUL APPLICATION WHERE EHP GENERATION IS INCREASED, LEADING TO DRIFT CURRENT INCREASE, OTHER THAN THERMAL EXCITATION IS OPTICAL EXCITATION \(\rightarrow \) PHOTODiode

\[
W = \left[\frac{2 \, \text{cGx} \, (V_0 - V_F)}{q} \left(\frac{(N_{\text{A}}^+)_{\text{eff}} + (N_{\text{D}}^+)^{\text{eff}}}{(N_{\text{A}}^-)^{\text{eff}} \, (N_{\text{D}}^+)^{\text{eff}}} \right) \right]^{1/2}
\]
Reverse Bias

* Applied E Field is now in the direction of Internal E Field \(\Rightarrow \) Net E Field increases

* \(\mu \) increases \(\Rightarrow \) Large Barrier

* Majority Carriers don't have the energy to pass the barrier \(\Rightarrow \) Diffusion current decreases

* Drift current remains the same \(\Rightarrow \) It depends on EHP generation of minority carriers due to thermal excitation!