LECTURE-16

SUMMARY OF PN JUNCTIONS

1. PEAK E FIELD IS LOCATED AT JUNCTION

Diagram:

- P region with negative and positive charges indicated.
- N region with negative and positive charges indicated.
- Energies and fields indicated with arrows and symbols:
 - E_0 and x_{p0}
 - x_{n0}

Graphical representation of energy and field distribution across the junction.
2) Potential difference in the energy bands:

$$ E_{bands} = q(V_0 - V) $$

- $V = V_f \rightarrow FB$
- $V = -V_f \rightarrow RB$

3) Fermi level difference:

$$ q|V| $$
* Electronic behavior differs for forward bias (FB) and reverse bias (RB)
I-V Characteristics

Ideal Case

- **ON**: $V > 0$ then $I = 0$ (DC)
- **OFF**: $V < 0$, then $I = 0$ (DC)

Internal Contact Potential $= 0V$

Diodes Are Non-Ideal

- **After**: $V > V_o$

Net Potential is $V_o - V$
DIFFUSION CURRENT

CONTACT POTENTIAL

TURN ON VOLTAGE (V_{TO})

IDEAL CASE

NON-IDEAL CASE!

FB REGION

V.V. IMPORTANT

I₀ → REVERSE SATURATION CURRENT

\[|I_0| << |I| \]

REVERSE BIASED CASE!

\[I_0 \]

\[V_{\text{RS}} \]

\[R_{\text{RS}} \]

MINORITY CURRENT

DRIFT CURRENT
FB
1) DIFFUSION I
2) FOR $V > V_0$, LARGE CURRENT
3) DRIFT CURRENT I_0 IS NEGLIGIBLE

RB
1) DIFFUSION CURRENT $I = 0$
2) DRIFT CURRENT DOMINATES, BUT SMALL!

EE253

I \rightarrow FORWARD SERIES RESISTANCE OF THE DIODE