

Io \rightarrow Reverse sandaton current (DRIfT CURRENT) MINORITY CARRIERS

$$
\left|I_{0}\right|_{R B} \lll|I|_{F B}
$$

DIODE EQUATION

$$
I=I_{0}\left[e^{9 V / k T}-1\right]
$$

$I \rightarrow$ CURRENT THROUGH DIODE
$V \rightarrow$ VOLTAGE ACROSS DIODE
APPROXIMATIONS

$$
\begin{array}{rl}
F B & V \gg 0 \\
& I \approx I_{0}\left[e^{q V / K T}\right] \rightarrow \text { NONLINEAR } \\
R B \quad & V \ll 0 \\
& I \approx-I_{0}
\end{array}
$$

New Section 1 Page 3

REAlistic modifications to the
Iv curve
(1) TURN-ON VOLTAGE

* general operating condition is away From The KNeE of The curve!

Friday, January 25, 2013
10:49 AM

New Section 1 Page 5

(1) NEAR V=0, IV (HARACTERISTC

Follows $\underbrace{I=I_{0}\left(e^{\text {VV }}-1\right)}_{\text {LOW }}$ INJECTION DIODE EQUATION
(2) AWAY FROM THE KNEE OF THE CURVE (FA CASE) V APPROACHES $V_{\text {to }}\left(V_{0}\right)$

$$
\text { APPROX. } \Rightarrow \sqrt{V=V_{t o}}
$$

(3) REVERSE SANRATION CURRENT $=-I_{0}$

$$
(R B(A B E)
$$

New Section 1 Page 7

ARE DESIGNED TO BREAKDOWN AT A CERTAN RB VOLTAGE

\rightarrow BREAKDOWN REGION
"MA grit UDE of THE CURRENT
CAN INCREASE BEYOND A

