LECTURE - 24

n-p-n TRANSISTOR

SUMMARY → DESIGN OPTIMIZATION

\[\text{opt} \]

1. \(n^+ \)
 \[I_E \approx I_{en} \]
 \[\gamma = \frac{I_{en}}{I_{en} + I_{ep}} \] NEAR UNITY

2. NARROW BASE WIDTH, LIGHT BASE DOPING
 \[\alpha_F \rightarrow \text{NEAR UNITY!} \]
\[\gamma = \frac{I_{e}}{I_{e} + I_{n}} \]

\[\alpha_F = \frac{I_{c}}{I_{e}} \]

\[\alpha = \alpha_0 = \frac{I_{c}}{I_{e}} = \alpha_F \delta \]

KCL NODE 1
\[-I_e + I_b + I_c = 0\]

\[I_b = I_e - I_c\]

\[\beta = \frac{I_e}{I_b} = \frac{\alpha}{1 - \alpha}\]

\[\alpha = \frac{\beta}{1 + \beta}\]
Design Optimization Criteria

PnP

\[P^+ \text{ Ig} \approx J_{ep} \]

\[Y = \frac{J_{ep}}{J_{ep} + J_{en}} \text{ near unity} \]

Narrow base & width, light base doping!
CIRCUIT CONFIGURATIONS

1. COMMON Emitter
2. COMMON COLLECTOR / Emitter FOLLOWER
3. COMMON BASE

Choice based on application
FORWARD BIASING "ACTIVE REGION"
BE → FB
CE → RB
CURRENT AMPLIFICATION GAIN

\[\beta = \frac{I_c}{I_b} \]

ONLY VALID FOR FORWARD ACTIVE REGION
i.e. when analyzing a CIRCUIT AND GOING FROM INPUT SIDE TO OUTPUT SIDE

3 BASIC REGIONS OF OPERATION

1. CUTOFF
2. FORWARD ACTIVE "ACTIVE"
3. SATURATION
IV CHARACTERISTICS

nPn

PnP
THINGS TO REMEMBER

1. For cut-off \(V_{BE} (or \ V_{EB}) < V_{to} \) (Turn-on voltage for PN junction)
 \(I_B \approx 0 \quad I_C \approx 0 \)

2. For \(V_{BE} (or \ V_{EB}) > V_{to} \)
 AND
 \(V_{CE} (or \ V_{EC}) \) (Saturation)
 Specification found in datasheet
 Active region

3. If \(V_{CE} (or \ V_{EC}) \leq V_{CE} (or \ V_{EC}) \) (Sat)
 THEN Saturation region