LECTURE 2

TYPES OF SOLIDS

1) AMORPHOUS SOLIDS → NO PERIODIC STRUCTURE
 → WAX, GLASS

2) CRYSTALLINE SOLIDS → 3D PERIODIC ARRAY OF ATOMS
 → DIAMOND, C, SUGAR

3) POLYCRYSTALLINE SOLIDS → MISORIENTED STRUCTURES
 → METAL POWDERS
Two Types of Crystalline Solids

1) Elemental → C, Ge, Si → IV
2) Compound → GaAs, InP → III-V

Crystal Lattice

The atoms are arranged in a periodic fashion

1) Simple Cubic

* Each corner atom contributes to \(\frac{1}{8} \) to the unit cell

\[
\text{# of atoms per unit cell} = \frac{8 \times \frac{1}{8}}{1} = 1\text{ atom}
\]
2) **Body Centered Cubic** (BCC)

\[
\text{Simple Cubic + 1 in the center of the cube}
\]

3) **Face Centered Cubic** (FCC)

\[
\text{Simple Cubic + 1 in the center of each face}
\]
4) DIAMOND STRUCTURE

Each atom has 4 neighbors.

\[a_{si} = 0.5431 \text{nm} \]
Top view of elemental diamond structure

Compound diamond structure
[ZINC BLende CRYSTAL STRUCTURE]

GaO

As

GaAs
Compound Crystalline Semiconductors

1) Binary Compounds \(\text{IIIA-V} \)
 - GaAs, AlP, InP

2) Ternary Compounds \(\text{IIIA-V} \)
 - \(\text{GaAs}_x \text{P}_{1-x} \)
 \(\% \) \(\% \)

 \(\text{Al}_x \text{Ga}_{1-x} \text{As} \rightarrow \text{Al}_{0.2} \text{Ga}_{0.7} \text{As} \)

* This is done to improve electrical and optical properties
In GaN \rightarrow 405 nm BLUE LASER

AlGaInP \rightarrow 635 nm RED LASER POINTER

GaAlAs \rightarrow 785 nm CD DRIVES

AlGaAs \rightarrow 1064 nm FIBER OPTIC COMM.

InGaAsP \rightarrow 1480 nm PUMP FOR OPTICAL AMPLIFIERS