* OP-AMPS \rightarrow OPEN Loop GAIN is HIGH (o)
* Typical use \rightarrow employ negative feedback, USING EXTERNAL CIRCUIT, FROM OUTPUT TO INRT To CONTROL GAIN
* note \rightarrow derivations are important
(1) inverting Amplifier

* open loop gain ad (a) $\uparrow \uparrow$
* closed loop gAin $A_{V}=\frac{V_{0}}{V_{I}}$
* IDEAL conditions

$$
\begin{aligned}
& A d \rightarrow \infty \\
& R_{\text {in }} \rightarrow \infty \Omega \\
& R_{0} \rightarrow 0 \Omega
\end{aligned}
$$

* IDEAL Lond TIONS Ad \otimes AND $V_{2}=0$
* IDEAL cons TTIONS

Ad ∞ AND $V_{2}=0$
$V_{1}=0 \mathrm{~V} \quad$ ["VIRTUAL GROUND"]
[NOT GROUNDED]

$$
\begin{aligned}
& I_{1}=\frac{V_{I}-V_{1}}{R_{1}}=\frac{V_{I}}{R_{1}} \\
& I_{2}=\frac{V_{1}-V_{0}}{R_{2}}=-\frac{V_{0}}{R_{2}}
\end{aligned}
$$

CURRENT INTO OP-AMP $=0 \quad\left[\because R_{\text {IN }}\right.$ IS $\left.\infty \quad \Omega\right]$

IDEAL!

$$
\begin{aligned}
I_{1} & =I_{2} \\
\frac{V_{I}}{R_{1}} & =-\frac{V_{0}}{R_{2}}
\end{aligned}
$$

$$
A_{V}=\frac{V_{0}}{R_{1}}=\frac{R_{2}}{\frac{-R_{2}}{R_{1}} \int_{\text {PHASE REVERSAL }}} \text { GAN IS A FUNCTION }
$$

$$
R_{\text {in }}=\frac{V_{I}}{I_{1}}=R_{1} \quad\left[\because \text { OF VIRTUE GROUND } \begin{array}{ll}
\text { THEORY }
\end{array}\right]
$$

ε_{x}

$$
\begin{aligned}
& A_{v}=\stackrel{\downarrow}{-}-5 \\
& v_{s}=0.1 \sin (\omega t) \\
& \text { max SuPply current of } 5 \mu A \\
& I_{1}=\frac{V_{I}}{R_{1}}=\frac{\partial_{s}}{R_{1}} \\
& R_{1}=\frac{V_{s_{1} M}}{I_{1}}=\frac{0.1}{5 \mu}=20 \mathrm{k} \Omega \\
& A_{v}=-\frac{R_{2}}{R_{1}}=-5 \\
& R_{2}=100 \mathrm{k} \Omega
\end{aligned}
$$

* if source has a finite R_{s} of ike

$$
\begin{gathered}
R_{1}=19 k \Omega \\
R_{2}=5(19 k+1 k)^{100 k \sim}=1
\end{gathered}
$$

Summing Amplifier

(1) SET $V_{I_{2}}=V_{I_{3}}=0$

$$
\therefore I_{1}=\frac{V_{I_{1}}}{R_{1}}
$$

$$
I_{2}=I_{3}=0
$$

$$
\because V_{1}=0
$$

VIRAL
GRound

$$
I_{4}=I_{1}
$$

$$
\therefore \quad V_{D_{1}}=-\frac{R_{F}}{R_{1}} V_{I_{1}}
$$

$\left.1\right|^{\text {lay }}$

$$
\begin{gathered}
V_{0_{3}}=-\frac{R_{F}}{R_{3}} V_{I_{3}} \\
\therefore V_{0}=V_{0_{1}}+V_{0_{2}}+V_{0_{3}} \\
=-\frac{R_{F}}{R_{1}} V_{1}-\frac{R_{F}}{R_{2}} V_{I_{2}}-\frac{R_{F}}{R_{3}} V_{I_{3}}
\end{gathered}
$$

$$
\text { IF } \begin{aligned}
R_{1}=R_{2} & =R_{3}=R \\
V_{0} & =\underbrace{\left.-\frac{R_{F}}{R} V_{I_{1}}+V_{I_{2}}+V_{I_{3}}\right]_{\text {GIN }}}_{\substack{\downarrow \\
\text { SINGLE GAIN FACTOR! }}}
\end{aligned}
$$

Ex DESIGN.
OUTPUT OF AN AMPLIFIER $=V_{01}=1.2-0.5 \sin (\omega t)$

$$
\text { DESIRED OP } \Rightarrow V_{0}=+2 \sin (\omega t)
$$

$\uparrow_{\text {AC }}$
\rightarrow (1) RETROVE DC

CHOOSE $\quad R_{1}=R_{2}=30 \mathrm{~km}$

$$
R_{F}=120 \mathrm{kr}
$$

EFFECT OF FINITE GAIN

$$
\begin{aligned}
& I_{1}=I_{2} \quad \because R_{1 N} \rightarrow \infty \\
& \frac{V_{I}-V_{1}}{R_{1}}=\frac{V_{1}-V_{0}}{R_{2}} \\
& \frac{V_{I}+\frac{V_{0}}{A_{d}}}{R_{1}}=-\frac{\frac{V_{0}}{A_{d}}-V_{0}}{R_{2}} \\
& \frac{V_{I}}{R_{1}}+\frac{V_{0}}{A_{d} R_{1}}=-\frac{V_{0}}{R_{2}}\left[\frac{1}{A_{d}}+1\right] \\
& \frac{V_{I}}{R_{1}}=-V_{0}\left[\frac{1}{A_{d}}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)+\frac{1}{R_{2}}\right] \\
& \left.\frac{V_{0}}{V_{I}}=A_{V}=-\frac{1}{R_{1}} \frac{1}{A_{d}}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)+\frac{1}{R_{2}}\right] \\
& \left.\lim _{A_{d} \rightarrow \infty}^{0} \Rightarrow \frac{V_{0}}{V_{I}}=\frac{-R_{2}}{R_{1}}\right]^{0}
\end{aligned}
$$

$\mathrm{Ad} \rightarrow(A) \rightarrow$ OPEN LOOP GAIN [FOUND in DATA SHE TB]
Ar \rightarrow ClOSED LOOP GAIN [BASED ON ExTERNAL CR (UT)

NON-INVERTING AMPLIFIER

IDEAL CASE

* A change in V_{2} will cause a change in V_{0}. BUT DUE TO FEEDBACK, (HANSE IN VO WILLCAUSE V_{1} TO Follow $V_{2} \therefore V_{1}=V_{2}$
[VIRTuAL SHORT), NO CURRENT is Flowing into THE TERMINALS

$$
\begin{gathered}
V_{1}-V_{2}=0 \\
\underline{V_{1}}=V_{2}=V_{I} \\
I_{1}=-\frac{V_{1}}{R_{1}}=-\frac{V_{I}}{R_{1}} \\
I_{2}=\frac{V_{1}-V_{0}}{R_{2}}=\frac{V_{I}-V_{0}}{R_{2}} \\
I_{1}=I_{2} \\
V_{I}-V_{0}
\end{gathered}
$$

$$
\begin{aligned}
1_{1} & = \pm 2 \\
\frac{-V_{I}}{R_{1}} & =\frac{V_{I-}-V_{0}}{R_{2}} \\
A V & =\frac{V_{0}}{V_{I}}=1+\frac{R_{2}}{R_{1}}
\end{aligned}
$$

* output is in phase with input
* GaIN >1
* $\widehat{R_{\mathbb{N}}}=\frac{V_{I}}{I_{\text {IN }}}=\frac{V_{I}}{0}=\infty$

IDEAL $R_{\text {IN }}=\infty$

