LECTURE-42

DIFFERENCE AMPLIFIER

\[\rightarrow \text{NOT POSSIBLE TO GET HIGH GAIN AND HIGH } R_I \]

INSTRUMENTATION AMPLIFIER

\[\rightarrow \text{HIGH GAIN AND HIGH } R_I \]

VIRTUAL SHORT THEORY

STAGE 1

STAGE 2

I_1 = \frac{V_{I1} - V_{I2}}{R_1}

I_1 = \frac{V_{01} - V_{02}}{2R_2 + R_1}

V_{01} - V_{02} = \frac{2R_2 + R_1}{n}(V_{I1} - V_{I2})
\[V_{01} - V_{02} = \frac{2R_2 + R_1}{R_1} (V_{I1} - V_{I2}) \]

\[V_0 = \frac{R_4}{R_3} (V_{02} - V_{01}) \]

\[\therefore V_0 = \frac{R_4}{R_3} \left(\frac{2R_2 + R_1}{R_1} \right) (V_{I2} - V_{I1}) \]

* Since input stage is non-inverting, \(R_I = \infty \)

* \(V_0 \) depends on \(R_1 \) → gain is varied using only \(R_1 \)
\[V_{0} = \frac{1}{sR_{1}C_{2}} V_{I} \]

\[V_{0} = \frac{1}{sR_{1}C_{2}} \int_{0}^{t} V_{I}(t) \, dt \]

\[A_{V} = \frac{V_{0}}{V_{I}} = -\frac{Z_{2}}{Z_{1}} = -\frac{1}{sR_{1}C_{2}} \]

\[s \rightarrow j\omega \rightarrow \text{COMPLEX FREQ.} \]

\[\frac{d}{dt} \rightarrow s \rightarrow \frac{1}{s} = \int \]

\[\text{INTEGRATOR} \]

\[R_{2} \]

\[C_{2} \]

\[\text{LOW PASS FILTER} \]

\[\text{CUTOFF FREQUENCY} \]

\[Z_{2} = \frac{1}{sC_{2}} = \frac{1}{j\omega C_{2}} \]
Differentiator

\[V_I - \frac{1}{sC_1} \]

\[V_0 = -\frac{z_2}{z_1} V_I = -s \frac{R_2}{C_1} V_I \]

\[\frac{d}{dt} v_0(t) = -R_2 C_1 \frac{d}{dt} v_I(t) \]

\[A_v = -\frac{z_2}{z_1} \]

High Pass Filter

\[f_c = \frac{1}{2\pi R_1 C_1} \]
HALF WAVE RECTIFIER OP-AMP CIRCUIT

\[V_s > 0 \]

DIODE 2 IS ON, DIODE 1 IS OFF

CURRENT FLOWS THROUGH \(R_C \)

(NEGATIVE)

\[V_o^- = -\frac{R_C}{R_A} V_s \]

\[V_o^+ = 0 \]

\[V_s < 0 \]

DIODE 1 IS ON, DIODE 2 IS OFF

CURRENT FLOWS THROUGH \(R_B \)

\[V_o^+ = -\frac{R_B}{R_A} V_s \] (POSITIVE)

\[V_o^- = 0 \]
Voltage to Current OP-AMP Circuit

Since input voltage is given to the negative terminal, $V_s < 0$ (requirement for proper biasing of transistor)

$V_2 = 0$ (Virtual Ground Theory $V_1 = 0$)

$I_1 = \frac{V_s}{R_1}$

$I_2 = \frac{D - V_E}{R_2}$

$I_1 = I_2$

$\frac{V_s}{R_1} = -\frac{V_E}{R_2}$
\[V_E = -\frac{V_S R_2}{R_1} \]

KVL BE Loop

\[-VB + V_{BE(on)} + VE = 0 \]

\[VB = V_{BE(on)} + VE \]

\[I_4 = \frac{VE}{R_E} \]

KCL NODE(A)

\[I_E + I_2 = I_4 \]

\[I_E = I_4 - I_2 \]

KVL CE Loop

\[I_C = \propto I_E \]

\[V_{CE} = V_{CC} - I_C R_C - VE \]

Output of Opamp

ASSUMING OPERATION IN ACTIVE REGION