LECTURE - 8
INTRINSIC SEMICONDUCTOR
AT EQUILIBRIUM

$$
\begin{aligned}
n_{0}=P_{0}=n_{i} & \left\{\begin{array}{l}
\text { TEMRIURATURE } \\
\text { DEPEN DENT }
\end{array}\right. \\
& \longrightarrow \text { EHP GENERATION } \\
& \longrightarrow \begin{array}{c}
\text { ONLY THERMAL } \\
\text { EXCITATION }
\end{array}
\end{aligned}
$$

EXTRINSIC
\longrightarrow DONOR ATOMS \longrightarrow Nd DONORS

$$
\longrightarrow \text { DONOR ATOMS }
$$

ACCEPTOR ATOMS $\rightarrow \mathrm{Na}$ ACCEPTORS

$$
P O \approx \mathrm{Na}
$$

\downarrow
\# $1 \mathrm{~cm}^{3}$
P-TYPE SEMICONDUCTOR

IF BOTH ACCEPTORS AND DONORS PRESENT

Transitions from cb to vb
ExAMPLE $\quad \mathrm{Nd}>\mathrm{Na}$
\therefore NET \# OF ELECTRONS = Nd -Na
$\mathrm{N}_{\mathrm{d}} \xrightarrow{e}$ AFTER DONATING ELECTRONS \rightarrow

$$
\mathrm{Nd}_{d}^{+} \rightarrow \text { IONIZES DONOR }
$$ ATOMS

$\mathrm{Na} \stackrel{e}{\longleftarrow}$ AFTER ACCEPTiNG ELECTRONS
$\mathrm{Na}^{-} \rightarrow$ IONIZED
AcCEPTOR ATOMS

MATERIAL itself is electrostatically NEUTRAL

Sum of Positive charges

$$
\left\{\begin{array}{l}
\text { OF POSITIVE CHARGES } \\
\{\text { HOLES }+ \text { IONIZED DONOR ATOMS }\}
\end{array}\right.
$$

- SUM of negative charges

$$
\begin{aligned}
& \text { SUM OF NEGATIVE CHARMS } \\
& \begin{array}{l}
\text { \{ELECTRONS }+ \text { IONIZED ACCEPTOR ATOMS }\}
\end{array} \\
& \mathrm{P}_{0}+\mathrm{Nd}^{+}=\mathrm{ND}_{0}+\mathrm{Na}^{-}
\end{aligned}
$$

SAY
MATERIAL IS HEAVILY DOPED wITH DONORS (n TYPE) $\left(n_{0}>P_{0}\right)$
AND ALL IMPURITIES ARE IONIZES

$$
n_{0} \approx \mathrm{Nd}-\mathrm{Na}
$$

Two equations
(1) $\mathrm{N}_{0}+\mathrm{Na}^{-}=\mathrm{P}_{0}+\mathrm{Nd}^{+}$
(2) $n_{0} p_{0}=n i^{2}$

Temperature dependency

INTRINSIC

DOPING witt DONORS Si ni

* dole the material such that the extrinsic Range extends beyond the highest operating temperature!

