LECTURE-8
EXTRINSIC SEMI CONDUCTOR
3 CASES

1) $n_{0}>P_{0}: \cap T Y P E: \mathrm{Na}^{-}<\mathrm{Nd}^{+}$
2) $n_{0}<P_{0}:$ TYPE: $\mathrm{Na}^{-}>\mathrm{Nd}^{+}$
3) $n_{0}=P_{0}:$ INTRINSIC: THERMAL EMP DOMINATES

Doling for compound
SEmi CONDUCTORS

COLUMN III-V

ACCEPTORS

$$
\begin{aligned}
& \text { III-立 }
\end{aligned}
$$

Room TEMP ERATURE

Ex. SEmiconductor is DOPED WITH BOTH DONOR AND ACCEPTOR IMPURITY, Complete ionization

$$
\mathrm{Nd}^{+}>\mathrm{Na}^{-} \rightarrow n \text {-TYPE }
$$

εx

$$
\begin{align*}
& n_{0}+N a^{-}=P_{0}+N_{d}+\ldots \text { (1) } \\
& n_{0} P_{0}=n_{i}{ }^{2} \ldots \text { (2) } \tag{2}
\end{align*}
$$

AlwAYS SOLVE FOR MAJORITY CARRIER FIRST!

$$
\begin{align*}
n_{0} P_{0} & =n i^{2} \\
P_{0} & =\frac{n i^{2}}{n_{0}} \tag{3}
\end{align*}
$$

SUBSTITUTE (3) IN(1)
(1)

$$
\begin{array}{r}
\text { (1) } \begin{array}{c}
n_{0}+\left(N a^{-}-N d^{+}\right)-P_{0}=0 \\
n_{0}-\left(N d^{+}-N a^{-}\right)-P_{0}=0 \\
n_{0}-\left(N d^{+}-N a^{-}\right)-\frac{n i}{n_{0}}=0 \\
n_{0}^{2}-\left(N d^{+}-N a^{-}\right) n_{0}-n i^{2}=0 \\
n_{0}=\frac{\left.\left(N d^{+}-N a^{-}\right) \pm \sqrt{\left(N d^{+}-N a\right.}\right)^{2}-4\left(-n i^{2}\right)}{2} \\
n_{0}=\frac{\left(N d^{+}-N a^{-}\right)}{2} \pm \frac{1}{2} \sqrt{\left(N d^{+}-N a^{-}\right)^{2}+4 n i^{2}}
\end{array}
\end{array}
$$

(B)
(A) $>(B)$

Choose the positive soculion

$$
\begin{aligned}
& n_{0}=\left(\frac{N d^{+}-N a^{-}}{2}\right)+\frac{1}{2} \sqrt{\left(N d^{+}-N a^{-}\right)^{2}+4 n i^{2}} \\
& \rho_{0}=\frac{n_{i}^{2}}{n_{0}}
\end{aligned}
$$

New Section 1 Page 5

$$
\begin{aligned}
& \text { IF } \quad n i \gg\left(N d^{+}-N a^{-}\right) \\
& n_{0}=\frac{N d^{+}-N a^{-}}{2}+\frac{1}{2} \sqrt{4 n^{2}} \\
& =\frac{N d^{+}-N a^{-}}{2}+n_{i} \\
& n_{0} \approx n i \\
& \text { IF } \quad n_{i} \ll\left(N d^{+}-N a^{-}\right) \\
& n_{0} \approx N d^{+}-N a^{-}
\end{aligned}
$$

εx
$\mathrm{Si}_{\mathrm{i}} \rightarrow R T$

$$
\begin{aligned}
& \mathrm{Na}=1 \times 10^{12} \mathrm{~cm}^{-3} \quad \begin{array}{l}
\text { COMPCEE } \\
\text { IONIZATION }
\end{array} \\
& \mathrm{Na}=\mathrm{Na}^{-} \quad n i=1.5 \times 10^{10} \mathrm{~cm}^{-3}
\end{aligned}
$$

P -TyPE
n_{0} ? P_{0} ?
only ACcePTOR impurity

$$
\begin{aligned}
& N d^{+}=0 \\
& n_{0}+N a^{-}=P_{0} \\
& P_{0}-N a^{-}-n_{0}=0 \\
& n_{0} P_{0}=n_{i}{ }^{2} \Rightarrow n_{0}=\frac{n_{i}{ }^{2}}{P_{0}} \\
& P_{0}-N a^{-}-\frac{n i^{2}}{P_{0}}=0 \\
& P_{0}^{2}-N a^{-} P_{0}-n i^{2}=0 \\
& P_{0}=\frac{N_{a}^{-} \pm \sqrt{\left(N a^{-}\right)^{2}-4\left(-n i^{2}\right)}}{2} \\
& =\frac{N_{a}^{-}}{2} \pm \frac{1}{2} \sqrt{\left(N a_{a}^{-}\right)^{2}+4 n_{i}^{2}} \\
& P_{0}=\frac{N a^{-}}{2}+\frac{1}{2} \sqrt{\left(N a^{-}\right)^{2}+4 n i^{2}} \\
& =10^{12}+1 \sqrt{1\left(10^{12}\right)^{2}+4\left(1.5 \times 10^{10}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{10^{12}}{2}+\frac{1}{2} \sqrt{\left(10^{12}\right)^{2}+4\left(1.5 \times 10^{10}\right)^{2}} \\
& \left\{\begin{array}{l}
P_{0}=1.000225 \times 10^{12} \mathrm{im}^{-3} \text { [MAJORITY (ARTIER] } \\
n_{0}=\frac{n_{1}^{2}}{P_{0}}=\frac{\left(1.5 \times 10^{10}\right)^{2}}{1.000225 \times 10^{12}}=2.25 \times 10^{8} \mathrm{~cm}^{-3} \\
{[\text { MINORITY }]}
\end{array}\right.
\end{aligned}
$$

\# of Si Atoms P er unit volume

$$
\begin{aligned}
\text { \# of Si ATOMS RER }
\end{aligned} \begin{aligned}
& (8 \text { ATOMS } / \mathrm{CELL}) /\left(0.5431 \times 10^{-7} \mathrm{~cm}\right)^{3} \\
= & 4.99 \times 10^{22} \mathrm{~cm}^{-3} \\
= & 1.000225 \times 10^{12} \mathrm{~cm}^{-3}
\end{aligned}
$$

\# of si ATOMS PER Acceptor atoms

$$
=\frac{4.99 \times 10^{22}}{1.000225 \times 10^{12}}=\frac{4.99 \times 10^{10} \mathrm{Si} \text { AToMS }}{}
$$

